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FOREWORD

The work described in this report was authorized under Task 1B522301A08101,
"Dissemination Investigations of Liquid and Solid Agents (U)." The work was
started in March 1965 and completed in December 1966.

Reproduction of this document in whole or in part is prohibited excipt with
permission of the CO, Edgewood Arsena!, ATTN: SMUEA-RPR, Edgewood Arsenal,
Maryland 21010; however, Defense Documentation Center is authorized to reproduce
the document for US Government purposes.

The information in this document has not been cleared for release to the
general public.
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DIGEST

A study was conducted to critically review and evaluate literature

in the field of atomization. The literature survey yielded 955 perti-

nent references which have been summarized together with abstracts where

available. The more important correlations presented in the literature

4 for the various mechanical atomizing techniques (hydraulic or pressure.

pneumatic or two-fluid, and rotary or spinning disk) have been summa-

rized and analyzed. The best agreement was shown by the data for

hydraulic swirl nozzles, where discrepancies were nominall, not over

twofold to threefold. The largest discrepancies, tenfold in some cases,

were found for simple hydraulic nozzles. A large part of the discrep-

ancy is attributed to shortcomings in the drop size analysis techniques,

including sampling.

t
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I INTRODUCTION

The subdivision of a bul Ik Ii qui d is common ly termed at omi zation.

Atomization may a'so be used to subdivide solids it they can be mel ted

as in the case of m'tals. Subdivision of a liquid (or a solid) may be

desired for a number of reasons: (1) to pecmit distribution of materials

throughout an area or space, (2) to expose a large surface for mass or

heat transfer, (3) to provide desired flow, packing, optical, insulation,

deposition, or other properties.

Because atomization is one of the processes involved in dissemina-

tion of liquid agents of solutions or suspensions (t solid agents, a study

was undertaken to critically review and evaluate the literature pertaining

to this field. The first phase of this study was an exhaustive survey of

the literature.

Although the literature survey revealed many reviews ol the field of

abomization [e.g., Eisenklam (I061). Fraser and Eisenklam (1956), Fraser,

Eisenklam, and Dombrowski (1957), kim (1959), Mlarshall (1954), M1cIrvine

(1957), klugele (1960), Putman et al. (1957), Ranz (1956), Tate (1965),

and Wolf'e and Anderson (1964)], c:one was considered adequately comprehen-

sive, nor were the results of various investigations presented on a

particularly comparable or usable basis. The second phase of this study

was therefore concerned with a detailed and critical analysis of the re-

sults of those investigators whose work appeared to be most important.

This analysis was undertaken with the objective of summarizing available

knowledge in the field of atomization in a self-consistent form to permit

a direct comparison between the results of various investigations and to

aid in the design of atomization equipment. The detailed analysis was

limited to certain mechanical atomization techniques (hydraulic ar pressure.

pneumatic or two-fluid, and rotary or spinning disk-illustrated in

Figs. 1-3). Some techniques (vibrational, explosive, and electrostatic)

have been reviewed during other phases of the program, while others

(gravitational and film bursting), although of importance in nature,

would appear to have capacities that are too limited to be of interest

in dissemination. These various techniques are summarized in Table I and

are discussed in Section Ill.
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In order to completely identify the performance of an atomizatioa

device it is necessary to specify the fol lcwing items as a luncion of the

operating conditions: (M) average size and uniformity (size distribution)

of droplets produced, (2) dower consumption, (3) liquid spraying capacity,

and (4) operational considerations such as erosion or clogging. This study

has been concerned primarily with the first of these, -ilthough the second

and third items must be taken into acciunt, if only indirectly. Certain

general conclusions can be drawn on the relative merits of the various

atomizing techniques from the standpoint of energy ot power consumption.

Capacity and operational considerations, however, are too intimately re-

lated to specific applications to permit generalized comparisons.

This report will cover only the intrinsic mechanical 7apahilities

of techniques for producing fine drops. Any further reduction in drop

•size that can occur as the rcsult of evaporation is beyot.' - scope of

preseot considerations, since it involves ather properties specific to

each liquid.

7,7
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II SUMMARY AND CONCLUSIONS

The I iterattre sur ev yielded Q455 pert I fient reflerences. These are

listed in Appendix H together with abstracts where avail able. The scope

ot' the most import unt invest igations in the literature (covering hydraulic,

pneumat ic, and rotary atomizers) is summarized in Table 11 The detailed

correlations presented L,4  each investigator relating mean irticle size

generat ed to t I ui d propert i es and operating conditions ar i mma ri z ed in

Tables Ill-V; in each table the data are presented in three *rmatLs. "The

first format gives the direct relationship. The second cony, s the re-

lationship into a generalized dimensionless form. The third g( es particle

sizes predicted bh the relationship for two velocit' levels and the stand-

ard properties and conditions specified in Table Vt.

For the standard properties and conditions the sizes predicted by

the various relationships for similar atomizers cover atwof'old and three-

fold range for the most part, with an extreme range of over tenfold in

some cases. There are also very marked disagreements in the megnitude of

the role played by each variable, with some investigators reporting in-

verted roles (i.e., particle size decreases with an increase in the vari-

able in one case and increases in the other case) for similar atomizers.

The best agreement i,, shown by the daca for hydraulic swirl nozzles for

which the most extensive data are available. Good agreement exists for

data on rotary or spinning disks. ttowever, these data are relatively

limited in extent. The greatest discrepancies are present in the data

for simple hydraulic nozzles.

Some of the discrepancy can be attributed to the tc.'lowing:

(1) many investigations covered only a narrow range af a variable, and

hence had limited precision in assessing variations due to that variable;

(2) some investigators did not actually investigate a variable but intro-

duced it in the correlation for either rational or arbitrary reasons.

The large d.screpancies found with simple hydraulic nozzles suggest that

turbulence, which is never reported or controlled directly, may be an

important factor. It is believed however that a large part of the dis-

crepancy is probably due to shortcomings in the drop-size analysis tech-

niques, including sampling.



Although resolution is needed in most areas, data are particularly

scarce in the fo|llowing: (I) effect of gas density on atomization,

especially pneumatic atomization, (2) effect of turbulence on atomization,

(3) effect of compressibility in pneumatic atomization, (.4) effect of

ultrahigh pressure in hydraulic atomization, and (5) effect of high

loadings (i.e., representative of production capacities) on performance

of rotary atomizers.

Although surface tenKi;-n is an important variable, its effect on

atomization is not sufficienI-t resolved. This is partially due to the

small range (threefold) of vari.-tility in surface tension available with

ordinary liquids. Although much iarger surface tensions can be obtained

by the use of molten salts and metý.s, very few investigators have em-

ployed them.
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III ATOMIZATION TECHNIQUES ANO MECHANISMS

A. Types of Techniques

Table I lists all the well known techniques by which liquids can be

atomized. Like most attempts at categorization, it is not possible to

develop a system in which each category is completely independent of

another. In Table I the distinction between the various types of tech-

niques is either in the geometry of the atomizing device or in the ulti-

mate source of the external motivating force applied.

The first three categories (hydraulic, pneumatic, and rotary) are

the mechanical techniques that are most widely used in industry, in agri-

culture, and in domestic applications. Figures 1, 2, and 3 illustrate

various types of geometric devices that fall into each of those three

categories. Vibrational and electrostatic techniques have received con-

siderable attention in recent years, but they are still in a development

stage. Explosive techniques have been widely used in military applica-

tions (chemical agent dissemination). Film-bursting and gravitational

techniques are prevalent in nature but are normally not capable of atom-

izing liquids at high rates.

B. Basic Considerations

Essentially any atomization process can be considered as a disruption

of the consolidating influence of surface tension by the action of internal

or externel forces or pseudoforces (such as inertia). In the absence of

such disruptive influences, surface tension would act to pull a liquid into

a spherical form (i.e.. a form with minimum surface energy). When opposed

by other forces or liquid inertia, this action of surface tension can

result in instabilities that will permit the bulk liquid to break up into

smaller units. Any shear stresses set up within the liquid through the

medium of liquid viscosity will resist a change in system geometry and

hence will exert a stabilizing influence (i.e., attenuate the disruption

process). On the other hand, external shear stresses in the ambient

medium may aid the disruption process by applying an external distorting

force to the bulk liquid.

11



In order for any force to exert a disruptive action sufficient to

produce particles of a desired fineness, the magnitude of the force must

equal or exceed any consolidating action exerted by surface tension. One

way to establish what types or magnitudes of forces are necessary to permit

given degrees of atomization is to represent the various common types of

forces ou a comparable basis and to show the way in which these forces

vary with drop size. This has been done in Fig. 4 where the various types

of forces have been expressed in terms of a pressure corresponding to a

variety of conditions. Surface tension has been expressed as an equivalent

internal pressure set up within the drop. In order to pioduce a drop of

a given size, it is necessary to exert an external force or action that

will be at least as large as the surface tension effect. Since the system

geometry and the relative direction and time of application of forces will

also influence the details of any subsequent disruptive action or result,

Fig. 4 cannot be expected to yield any rigorous quantitative comparisons.

However, the figure is useful for demonstrating the ranges of utility and

the necessary order of magnitudes for atomizing by various mechanisms.

For example, the action of gravity alone might be expected to yield drops

in the size range of several millimeters, but it would be incapable of

fine atomization. A force field of 10,000 gravities (which can be achieved

by rotary devices) would permit formation of drops in the 100-micron-

diameter range. Drag forces due to the motion of a liquid relative to

atmospheric air can yield drops in the size range of 10 microns provided

the relative velocity approaches that of sound.

In a hydraulic nozzle, pressure erergy is converted into kinetic

energy of the liquid. If the motion of the liquid is changed in any way,

the resulting inertial forces will tend to exert a disruptive influence.

One might expect, therefore, that the maximum disruptive effect would be

achieved by impingement of a fast moving liquid jet on an obstacle. On

this basis one might expect that drops of the order of 10 microns in

diameter could be produced by the use of hydraulic pressures somewhat

greater than 10 psi, which would be the case if pressure differences of

this order were set up over distances corresponding to the order of

10 microns. This, of course, requires much larger hydraulic pressures

unless one starts with a sufficiently small diameter jet. It is more

likely that the atomization from a hydraulically induced jet arises from

the resulting drag of the surrounding atmosphere. In that case the

hydraulic pressure acts primarily to set up a relative velocity between

12



the liquid and the atmosphere. Hydraulic pressures ol approximately

0.007, 0.7, 70, and 7000 psi are required to accelerate liquids having

densities close to that of water to velocities of 1, 10, 100, and 1000 it/sec

respectively, ignoring possible energy losses in the energy transfer.

liis, to produce 10 micron drops would require hydraulic pressures of at

least 7000 psi.

It is apparent from Fig. 4 that it is difficult to develop mechanical

forces which are cdpable of overcoming surface tension in the submicron

range. Sudden release of superheated liquids would be a way in which high

disruptive internal pressures could be developed. Such releases, however,

must be very rapid in order to minimize the attenuation of those disrup-

tive pressures resulting from evaporative cooling. The actual process is

a complex equilibrium between liquid acceleration due to internal pressures

and relaxation of those pressures by heat transfer to the liquid surface.

In addition to any pneumatic effects, this mechanism might be involved in

explosive atomization.

C. Static Drop Formation

The most elementary form of atomization is the quasi-static case of

the hanging or pendant drop. In its simplest foi, it is exemplified by

the emission of a liquid at a very slow rate along a discontinuity, as

in the slow discharge of a liquid from the end of a burette. When the

action of gravity on the liquid exceeds the surface tension force along

the discontinuous surface or wall, the liquid will be pulled away from

the surface and a drop will form. For this type of slow emission of

liquid from a thin circular tube, the mass of the drop formed is given

by

aP = iD o/go (1L"

The size of a spherical drop corresponding to this mass is given by

DP . (6D)o-j1 PjgL ) 1/1 (2)

The quasi-static breakaway of a liquid from a flat horizontal wetted

surface involves a mechanism that is basically the same as that from a

discontinuous surface, but one that involves a more complex balance of

For definition of terms as. section o "Nonmclature.
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gravitational .. nd surface tension forces. Based on the work of Tamada

and Shibaoka (1961), the drop size formed by this mechanism is given by

DP = 3.3(a !P1gL) 1 / 2  
. (3)

From Equationu 3 one would predict that drops, formed slowly by the

action of normal gravity on a liquid film, would be 9 mm and 5 mm in

diameter for water and organic liquids, respectively. By forming such

drops from a 1-mm-diameter opening (with a discontinuous edge) instead

of from a flat film, Equation 2 would predict drop diameters of 3.5 mm

and 2.5 mm for water and organic liquids, respectively. If the hole size

were reduced t I micron in diameter, the predicted drop size would be

one tenth as large, or 350 and 250 microns, respectively. Thus the case

of either the hanging or the dripping drop in a gravitational field in-

volves production of relatively large drops at low rates. Although this

mechanism is common in nature, it is not very effective when extensive

atomization is desired, from the standpoint of either capacity or drop

size. Gravity is a major factor only as long as forces due to hydrostatic

head within the confines of a potential drop are sizable as compared with

other forces. Thus gravity becomes a less significant factor in atomiza-

tion as drop size decreases, and it becomes a negligible direct factor for

producing drops smaller than 500 microns in diameter. Synthetic gravita-

tional fields (such as centrifugal fields) that are much more powerful

than ordinary gravity, however, can play an important role in fine atom-

ization. Such fields are encountered with the spinning disk and will be

discussed later.

As the rate at which liquid is fed to the htnging drop becomes np-

preciable, the breakaway is no longer the result of a quasi-static force

balance. Both liquid inertia and kinetics then play an increasing role

and the role of gravity becomes smaller.

D. Kinetic Drop Formation

The practical application of the atomization process requires that

droplets be produced at some predetermined rate. This means that liquid

must be supplied at some finite rate and continuously converted into

droplets. The kinetics of all such atomization processes involve the

following sequential steps, although any specific step may be negligible

or absent under some circumstances:

14



1. The extension of a bulk liquid into sheets, Jets, films,
or streams by acceleratLing the liquid in some prescribed
manner (as through a nozzle or off a rotating disk).

2. The initiation of small disturbances at the liquid surface
in the tori' of local ripples, protuierances, or #aves.

3. The formation of short ligaments on the liquid surface
as the result of fluid pressure or shcar forces.

4. The collapse of the ligaments into drops as the result
of surface tension.

5. The further breakup of the drops as they move through
the gaseous medium by the action of fluid pressure or
shear forces.

The pendant drop previously discussed is a unique case for which

the first and fourth steps alone are appreciable at negligibly low liquid

rates. For this caqe only a balance between the gravitational field And

surface tension is involved. As socn as fluid rates become significant,

fluid inertia plays a major role, together with any of the other forces

arising as the result of the fluid motion, and those forces introduced

to achieve fluid motion (such as pressure and shear). The last step in-

volves a unique limiting situation which will be treated separately

in the next se tion.

There have been numerous attempts to theoretically analyze the

kinetics of the atomization process. The most significant early work is

that of Rayleigh (1878). This and the contemprary work have been sum-

marized by Putman et al. (1957). %.though this theoretical work has been

useful in understanding the Atomizatior process, it has not yet provided

a quantitative description that can be used to design and predict per-

formance of spray systems. Because of this a large amount of experimental

data has been accumulated in the form of empirical correlations, which

will be considered in a subsequent section.

Although the atomization process may izvolve all five specific steps

mentioned above, it is usually possible to consider the atomization in

only three stages. The first stage is that in which the fluid is brought

to a point of initial breakup (and would comprise a combination of

Steps 1, 2, and 3 above). The second and third stages would comprise

Steps 4 and 5, respectively.

15



For the firnc stage, Miesse (U955) gives the following relationship

as representative of the distance that a single hydraulic jet travels in

stationary gas before breakup occurs:

102.ODt/Su•1 /'p, / 2 M1SB

L6= (4)
p5 lSa1 /2
£ J

The actual data from which this relationship was derived showed consider-

able scatter. This equation can be written in a dimensionless form as

(D u2p / a )1/2
"(L6 /D,) = 102.8 ' u ' . (5)

For the standard Hiuid and nozzle properties listed in Table VI, (L 6 /D,)

would range from 43.4 to 102.8 for velocities, a of 1000 and 10,C0 cm/sec,

respectively, according to this relationship. These values would corre-

spond to breakup lengths, L., of 4.34 and 10.28 cm, respectively.

Miesse (1955) presents the following relationship for the maximum

drop size produced in the primary breakup of a jet from a simple hydraulic

nozzle:

t• (DPG*• 23.5[l + 0.0000168(D u ,P a ,

(D 2~/a,7)1/3

V 23.St + 0.0000168NI](6)

This equation is based on limited data for a jet discharging into atmos-

pheric air. Other data for discharge into air at high pressures showed

somewhat smaller diameters that those that would be predicted from the

above equation; data on injection into a low density atmosphere Save a

somewhat larger value of drop size.

The third atomization stage involves the secondary atomization of drops

produced in the primary breakup of the jet. This will be discussed in the

next section. The overall atomization produced by the effect of all of

the stages will be discussed in the section on bulk liquid atomization.

16



Doyle, Mokler, and Perron (1962) have derived the following relation-
ship to express the particle size to be expected from ultrasonic

atomization:

F4•C.I~s1/3 "

DS . CO. JN 2 (7)

where CDN is a constant that measures the fraction of the total surface-

wave cone height decapitated in the atomization process and CDal is another

constant that measures the ratio of cone height to diameter. The authors

suggest values of 1/2 and 1 for C DN and CjWV, respectively.

In ultrasonic atomization, the drop size is
PARTICLE

determined primarily by the frequency of the os- FREQIECT. I DIAMETER.

cillation imposed on the liquid. The quantitative (micro
effect of frequency in determining drop size is 10 483

illustrated by the accompanying values calculated 10 4  104

from Equation 7 for the atomization of water 105 22.5
106 4.83

( 72 dynes/cm and p I g/cu cm). It is not 107 1.04
the intent of this report to analyze the area of

ultrasonic atomization in detail; the above is presented only as a basis

for comparison with other atomization techniques.

i

17



SM

IV SINGLE DROP BREAKUP

When a droplet is moving through a fluid, there will be imposed on

the surface of the drop both a pressure and a shear distribution. The

integrated result of both of these is usually termed total drag on the

droplet. As a result of the pressure distribution, the drop will become

deformed, assuming a shape such that surface teasion will compensate for

the pressure variations. The shear will induce a circulation of liquid

within the drop, and as a result of this circulation the pressure dis-

tribution will change. If the pressure variation becomes sufficiently

great, there may be no stable shape that can compensate for the pressure

variation, and the drop will deform indefinitely (i.e., burst). Many

authors [e.g., Mugele (1960)) have indicated that, this critical condition

is achieved when the drag force just balances that of surface tension or

when

Fo =C (nD2/4)(p u2/2) - iii a (8)

The terms may be rearranged to dimensionless form as follows:

(DWu 2,/a) 8/CD (9)
Cr

where the subscript "cr" has been added to indicate that a critical con-

dition has been achieved. The first term is the Weber number based on

gas density, relative velocity, and particle diameter, and Equation 9 may

be written as

(Ne,,)cr a 8 /CD

By solving for D ,. Equation 9 may be used to estimate the maximum drop

size which is stable at a given relative velocity, u,

D 8a/Copu . (11)
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By solving for ur, the critical velocity at which a drop of size D will

rupture is given by

u'r, = V8o /C#p8DP (12)

Actually Equation 8 (and consequently Equations 9-12) cannot be derived

on a rigorous basis, and can be considered only a crude approximation.

Equation 8 basically assumes that the droplet is spherical and Lhat the

drag is all a form (pressure) drag that results in a corresponding in-

crease in internal drop pressure. Equation 8 is basically the locus of

all points of intersection of the curves for equivalent pressures due to

drag and surface tension forces shown in Fig. 4.

In the actual case the drop will deform significantly from a spherical

shape and will contain induced internal circulations long before the un-

stable condition is reached. Actually, because the drag coefficient is

usually defined in terms of the projected area of a sphere having the same

volume as the drop and because form (pressure) drag is usually predominant,

Equation 8 gives a better approximation than might otherwise be supposed.

At Reynolds numbers (Dpupa/1  ) greater than 1000, CD is approximately 0.4

for solid spheres. However, when CD is expressed in terms of the pro-

jected area of an equivalent sphere, it is found to range predominantly

from 0.8 to 1.1 for drops at Reynolds numbers greater than 1000 (Nottage

and Boelter (1940), Hughes and Gilliland (1952)]. This is due primarily

to the greater drag force resulting from the drop deformation (flattening).

Lane (1951) found two types of breakup when drops were exposed to

high velocity gas streams. TI.e first, termed "bag breakup," was en-

countered when a drop was exposed to a 3radually increasing gas velocity.

Under those conditions the drop becomes increasingly flatter. At a

critical relative velocity, the drop is blown out in a concave manner to

form a hollow bag attached to a roughly circular rim. Bursting of this

bag produces a shower of very fine droplets, while the rim, which contains

at least 70 percent of the original drop mass, breaks up lIter into larger

drops. The second type of breakup, termed "shear or stripping breakup,"

was encountered when tne drops were subjected to abrupt, fast (transient)

air blasts. In this case the drops presented a convex surface to the air
flow, the diameter of the surface being approximately twice that of the

original spherical drop. The edges of this saucer-shaped surface are
first drawn out into a thin sheet, then into filaments that collapse to

20



form fine drops. This type of breakup occurred at a somewhat lower

average velocity than that encounteredI with bag breakup.

As pointed out by Hanz (1956), the critical Weber number (N,.,)

is approximately 20 when the velocity is applied slowly (bag breakup)

and 13 when the velocity is applied suddenly (stripping breakup) as in a

shock front. These values apply as long as the viscosity of the liquid

is low. Hanson, Dimoch, and Adams (1963) found that liquid viscosity

had no significant effect on drop breakup by gas blasts as long as the

kinematic viscosity was less than 10 centistokes. In the range of 10 to

100 centistokes, the critical velocity for breakup is increased substan-

tially (e.g., 70 percent for breakup of a 150-micron diameter drop having

a kinematic viscosity of 100 centistokes). At the high kinematic vis-

cosity the effect on critical velocity becomes greater as the drop size

decreases. These studies also indicated that the critical gas velocity

for drop breakup in a shock tube may be more nearly proportional to the

cube root of liquid surface tension than to the square root implied by a

critical Weber number (Equations 10 and 12). They suggest that brrakup

may be a function of a critical value of the product of Reynolds and

Weber numbers

[i.e., (N,, ,Nn p,)g = (DIap/U P2' / ,)

For liquids with kinematic viscosities of 10 centistokes or under, they

found that (N.,.) ranged from 9.6 to 15.9, while [Nu,5NaP,9 c ranged

from 5040 to 8940. For liquids with kinematic viscosities of 50 to 100

centistokes, (N,,,) ranged from 20.8 to 47.6, while £N,,,N8,,, ] ranged

from 13,700 to 29,400.

Ranz (1956) indicates that atomization ceases because of liquid vis-

cosity when the group j/Dp a• is greater than 4. This group is the

Ohnesorge number, Nos,.

Hinze (1955) suggests that the critical Weber number for a high vis-

cosity liquid can be obtained from the critical Weber number for low

viscosity liquids by multiplying the latter by a correction factor, k..

which is a function of the group No0 ,. He presents graphical data for

viscous drops suddenly exposed to an air stream. Those data can be

closely approxirated by
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k , " /Dpp;p) 1 (13)

Thus, for Dp = 150 micro-is, p• = 100 cp, /)P ý I g/ cu cM, jP . 72 dynes cm,

the value of kp = 1I.9. This would correspond to a 40 percent increase

in critical breakup velocity, which is somewhat less than that reported

by Hanson et al. (1963) for similar conditions.

In an experimental investigation of aerodynamic breakup of liquid

drops, Hanson et al. (OQn3) found that, contrary to what Lane (1951) ex-

perienced, bag breakup always occurs in the transient case as well as in

the steady case except when the gas velocity is greatly in excess of the

critical value. They also report that, with some drops undergoing bag

breakup, the bag develops a re-entrint portion, or"stamen," near its

middle, which increases in length with time and which in snr,o cases

inverts the bag before breakup occurs.

The above provides s'me basis for predicting under what conditions

a drop will undergo breakup. It does not, however, give any basis for

predicting the size of the droplets resulting from the breakup. Wolfe

and Anderson (1964) have derived the following relationship for the aver-

age drop size, D.., resulting from the further aerodynamic breakup of a

drop of size P when exposed to a relative velocity, u,:

1/ P0 12 ~ L'6 1/31/
[ 9 6V/I L•2 £ ) 2/2/3 5.14DO'jzyzcrp1 2

• D " "(14)

kd. L e P /| 4 J 112p2 .4/3 L16 V/3
V2P2 9 U, p;P6

"This equation may be rearranged to the following forms:

on " 5. 14( pp/Pl ) W3 5. 14(p,,/Pp )1/6

ii~ 1O1 p p ~,I2 (D 2~ Dup

\I P .1~p ) P 2

The derivation of this relationship involved a large number of assump-

tions (drag coefficient assumed as unity; specific proportionality

factors assumed in establishing fluid sheet thickness, breakup time,

and shear stress; aerodynamic forces assumed large as compared with

viscous or surface tension forces). Based on an initial drop diameter

of 1 mm and the fluid properties specified in Table VI, D.. would be
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predicted from Equation 14 as 753 and 35.0 microns for relative velocities,

u,, of 1,000 and 10,000 cm/sec, respectively.

Dickerson and Schuman (1965) exposed a single drop to high velocity

(shock) air streams and measured the rate of change of the drop mass. They

reported the following correlation

us 3.53 x 10-sD-1 . u 9 6 0 4 0 98 0.42

- = P U ;

Ur 18

0.98 ,.,S
353 x {- ) j (16)

where the droplet mass loss rate has been expressed as an equivalent sur-

face regression velocity, u, [defined as (1/2)(dI4/dt)I; and N,,P and NF,,

are Reynolds number and Weber number, respectively, based on drop diameter,

drop properties, and relative velocity. The apparent regression velocity
was obtained from the rate of change of particle mass. The latter was de-

termined from observed values of drop velocity, acceleration, and diameter

as a function of time, although details are not given. It appears that

this determination was predicated on arbitrari>y assumed d*:g coefficient

relationships. Since these themselves would be varid-ie, subject to the
specific distortions exhibited b, the droplet, the vaidity of such a

measurement is questionable. The test conditions involved a single liquid

(HP-I-kerosene), a single gas (nitrogen), and two gas flow rates and

densities.

Corcoran (1960) suggests that the Bond number (pPgLD/1crP), previously

introduced by Bond and Newton (1928) in connection with the rate of riseI of bubbles in liquids, would give a better criterion for the breakage of

an accelerating drop than would the Weber number. The Bond number is

essentially the ratio of hydrostatic pressure in a drop to surface tension

pressure. While this may be applicable for the breakup of very large

drops (> 1 mm), it is unlikely that the Bond number is applicable to fine

atomization. The Bond number could also apply to cases in which accel-

eration is due to forces other than gravity, by replacing"gL" with"a."

Normally, however, any drop acceleration will actually be a drop decel-

eration due to the action of drag forces. In that case the Bond number

would be reduced to a combination of the Weber and Reynolds numbers.
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V BULK LIQUID ATOMIZATION

It is the purpose of' this section to present, summarize, and evaluate

_' the available knowledge on the continuous atomization of bulk liquids by

a variety of mechanical processes. ior convenience these data have been

grouped into categories similar to those outlined in lable I: hydraulic,

pneumatic, and rotary. Because of the extensive data available on hydrau-

lic techniques, these have been further subdivided into three classes:

simple jets, impinging jets, and swirl jets. Table II gives a summary nf

all the investigations covered together with the range of conditions em-

ployed by each investigator.

The data on hydraulic, pneumatic, and rotary techniques are presented

in Tables III, IV, and V, respectively. Table Ill is split into three

parts (A, B, and C) to cover each one of the three classes of hydraulic

techniques.

The considerations involved in presenting and analyzing these data

are presented below together with a discussion of their overall signifi-

cance and use.

A. Manner of Data Presentation

In making an analysis of atomization data it would be desirable to

summarize and compare all available basic experimental data. This is,

however, difficult for three reasons: "(1) most literature reports of

investigations do nut present basic data in a sufficiently complete form

to permit direct comparison with other data; (2) the available data are

so extensive that a reconsideration of individual data points would be a

monumental task; and (3) many data could not be compared directly because

of intangible or intrinsically irreconcilable differences in methods of

operation or measurement. Therefore, instead of comparing specific data,

the various correlations of data that have been presented in the litera-

ture have been summarized. The results of other investigations that were

not extended to the point of a correlation have been used only to establish

specific points. Because of the extensiveness of the literature it was not



possible to be comprehensive. However, it is believed that all of the

more important investigations have been covered.

Each correlation was presented, where possible, ii three formats.

The first was a direct equation relating average particle size to geomet-

ric and operating variables, the relationship being presented in a

standardized nomenclature but in a form as near to that used by the

author as possible. In the second format, the equation was manipulated

into a generalized dimensionless form. The basis for this format will

be discussed below. In the third format, values of average particle

diameter were ca!culated from each correlation for arbitrarily chosen

standard fluid and nozzle properties and for t*o veluuity levels. Thesa

standard properties are specified in Table VI and approximate a reason-

able representation of practical ranges of operating conditions.

The first format gives a direct representation of the importance of

each geometric or operating variable on average particle size. The second

format is an attempt to provide a generalized comparison of the correla-

tions on a mechanistic basis. The last format provides a direct simple

comparison of what each correlation would predict for a specific practical

operating condition.

B. Expanded Relationship

In the expanded relationship the.original format of the correlation

presented by the author has been preserved insofar as possible. In some

cases algebraic substitutions of equivalent quantities have been made.

In cases where correlations have been given by the author in terms of

pressure drop, this fact has been retained. However, in those cases, an

additional conversion in terms of velocity is also shown. This cor.ver-

sion involves a direct algebraic substitution of equivalent quantities.

In a few cases the author presented a complex mathematical correla-

tion that would not lend itself to manipulation into the "Generalized

Format." In most of these cases it was apparent that a simple exponen-

Stial format would have fitted their data just as well. In those cases

this alternative equivalent correlation was given even though that for-

i, at was not presented by the author. The degree of equivalence to (or

discrepancy from) the authors' original equation can be assessed by com-

paring the particle size values predicted from each equation for the

standard conditions.
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In many cases the authors have introduced variables into their Lor-

relations which they did not actually vary. In some cases this wiAs justi-

fiable on grounds of dimensional reasoning; in other 's.aes it was completely

arbitrary and unjustified, in all cases the expanded relationship is

given as reported by the authors, and no attempt has been made to remove

irrelevant or unjustifiable variables. In many cases it was impossible to

make such , decision on the basis of the material presented. In a few

cases, the author left out a variable because he actually varied it and

found that it had no significant effect. In those cases that variable

has been identified in the expanded relationship by an exponent of zero.

Some investigators [Kuznetsov and Tslaf (1957), and Tanasawa and

Toyoda (1955,(1956)] have arbitrarily introduced aFroude number into their

correlations. However, they did not vary the force field, 9L' and covered

an insufficient range in the other variables to either establish or dis-

prove the role of the Froude number. It is difficult to conceive that

gravity could have any significant effact as compared to the effects of

other forces over most of the ranges covered.

In some cases semantic pioblms and presumed typographical errors

could not be resolved-these are noted in the tables. A major inconsis-

tancy in the comparisons is the method of expressing average particle size.

Most investigators used the Sauter mean diameter, L3 2 , for expressing

average particle size: several used volume (or mass) median diameter;

and some used a variety of averages or did not specify which average was

used. Since sufficient data is rarely given on size distribution, it

was not possible to convert a~erage size to a consistent comparable basis.

Instead, the type of average reported by each investigator is indicated

in the tables. As a rule, the volume or mass median diameter will be

larger than any other common average diameter. The Sauter diameter will

be somewhat smalle!r (say 30 to 50% smaller for most practicil conditions).

Linear average diameter or number median diameters can be very much smaller

than either the Sauter or mass median diameter.

It should be recognized that particle size analysis is still very

much of an art. When applied to sprays, the added problem of represents-

Live sampling may introduce major additional errors, especially for the

larger particles. Prcblems of evaporation can lead to major errors in

reporting the finer particles. Thus the question of obtaining a repre-

sentative absolute size analysis is one which compounds the problem of

type of average size specified.
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Sampling a spray for analysis involves many diffi.azlties. Direct

sampling poses problems of both withdrawing a representative sample of

drops and maintaining the drops unchanged (i.e., without deposition of

the larger particles on the sampler walls). While in situ measurements

(as by direct pttography) can avoid the direct errors from sampling, they

may introduce a more subtle, and often unrecognized, error. There are

basically two types of in situ measurements: (1) measurement of particles

or drops existing at a given instant in a volume of gas; (2) measurement

of particles or drops passing through a given plane. These two measure-

ments will yield the same result only if the velocities of all the

particles are the same in magnitude and direction (and if one ignores any

separate problems that can arise as the result of spatial variations in

size distribution). In the general case it is necessary to have aknowl-

edge of the velocity of each particle in addition to a knowledge of its

size if one wishes to convert from one type of in situ measurement to

another. To establish the nature of the spray produced by a given nozzle,

it is necessary to make a measurement of the second type. For this pur-

pose a measurement of the first type would yield a size distribution which

ir biased toward the slower moving particles. Some investigators, however,

have used a measurement of the first type and assumed it to be representa-

tive of the spray produced. A measurement of the first type yields the

actual distribution of sizes existing in a volume and would be the desired

measurement for defining cloud or plume properties or for expressing

t• phenomena that some other entity (body, wave, or beam) would experience

when passing through the space at speeds high compared to those of any

of the particles.

C. Generalized Format

The degree of atomization achieved by the various mechanisms can be

expressed in the following form, as developed in Appendix A from dimen-

sional considerations:

For hydraulic and pneumatic nozzles,

I For rotary or spinning disk atomizers,

(DI D) kINj.. NO 'IA(8it1.v a tjd Wt(18
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Here the dimensionless numbers are based on liqiiid properties, a charac-

teristic dimension, and the relative velocity between the liquid and the

gas into which it is atomized (or disk tip velocity in the case of a

spinning disk).

In Appendix A it is shown that, if the atomization is not influenced

by gravitational or compressibility effects, then k will include only

effects associated with relative properties of the gas phase and nozzle

geometry. Gravitational effects could be significant only at very low

relative velocity and for large drops. With spinning disks the centrif-

ugal effect, which is the counterpart of the gravitational effect with

hydraulic and pneumqatic nozzles, is important. However, for that case

the equivalent Froude number is not an independent variable, and the

centrifugal effect may be allowed for by the combination of any of the

other pairs of dimensionless groups, such as Revp-:X> and Weber numbers.

Compressibility should be a factor only in the case of 'igh pressure pneu-

matic atomizers. Since there is little reaso.i to believe that gas viscos-

ity will play any major role (except possibly for very fine drops), the

factor k can, for the most part, be expected to include only a measure of

nozzle geometry and of the density of the gas relative to that of the

liquid in hydraulic or spinning disk stomizers. With pneumatic atomizers,

the term k would also include a measure of the loading (liquid-to-gas ratio)

a~id of compressibility at the high air pressures.

In order to provide a common basis for comparing the correlations

proposed by the various investigators, each relationship hri been manip-

ulated into the form dictated by Equations 17 and 18. There are, in

general, many ways in which the correlations can be manipulated depending

on which terms are to be excluded from k. The proceduiea governing these

algebraic transformations are given in Appendix A. If all the investiga-

tors had covered all the variables without errors in any of the measure-
ments, all such transformations should yield the same final format (or

multiple formats). Actually, most investigators did not vary all the

factors reported asvariables and they probably hadsome inherent errors in

their measurements. In addition, many investigators, on the bases of an

arbitrary opinion, introduced quantities that were not varied into their

correlations. Since the quantity (or its equivalent in terms of dimen-

sional analysis) was not varied, there exists no basis for establishing

the validity of such an arbitrary introduction. This is especially true

in some of the Russian literature where the Froude number is given great

prominence for no apparent reason.
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In making a transformation to a common format, it is reasonable to

concentrate on those quantities which wre varied most widely. Surface

tension was rarely varied over more Lhan a threefold range (from 25

dynes/cm for hydrocarbons to 72 dynes/cm for water) since there are but

few data on molten metals or mercury, for which surface tension is upwards

of 400 dynes/cm. Fluid velocity and viscosity lend themselves to the

greatest variations. Nozzle size could also be varied widely, but prac-

tical considerations often dictated a range of less than threefold. Many

investigators also tended to change geometry whenever they changed size.

In actually making the transformations to the common format, various

bases were used for the results of the different investigators. While an

attempt was made to choose the most widely varied quantities as the basis

for the transformation, this was often not feasible because the author

did not cover a reasonably wide range, did not specify his range, or

varied his geometry in the process. In any event, the actual basis used

is indicated in Tables Ill-V, and in many cases the transformation was

made on more than one basis.

In transforming from the expanded relationship to the generalized

format for hydraulic and pneumatic nozzles, the velocity term in the

generalized format was based on the rel tive velocity, u . For each

type of nozzle the definition of ur given in the table of nomenclature

was adhered to. For rotary (spinning disk) atomizers, the velocity term

in the generalized format was taken as the tip speed of the rotor, ud,

which comes close to being the aztual relative velocity between liquid

and gas in most cases. With a vaned rotor the actual relative velocity
will be somewhat larger than u4 due to any additional radial component

resulting from the liquid flow. With a nonvaned rotor, the actual rela-

tive velocity may be less than ud because of slippage between the fluid

being atomized and the disk surface.

One might conclude that the most reliable investigation is one which

yields the same, or reaches the same, final result when transformed to
the generalized format on several different bases. This would be true

if w&xe investigator had actually varied all the variables independently

in the experimental work. In most cases, however, this was not done and
the correlation includes quantities that were not varied, these quantities

having been introduced on the basis of dimensional reasoning similar to
that used in Appendix A. In those cases, of course, agreement between

various bases of transformation is preasaured.
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D. Particle Size Prediction

The standard properties and conditions were selected as unit powers

of ten. This was done to permit easy extrapolation of the specific values

given to any other 'luid property or condition by reference to the ex-

ponential variation for that property or condition shown in the first

format.

The fluid and nozzle properties specified in Table VI are common to

all correlations. Two velocity levels were chosen fcr all predictions,

1000 and 10,000 cm/sec. Table VI also gives the value of various dimen-

sionless groups and other quantities corresponding to these velocitites

and to the standard fluid and nozzle properties. Because some authors

introduced additional factors into their correlations, it was necessary

to set additional specifications for those cases. These additional spec-

ifications are given in the summary tables ([II, IV, and V) for those

investigations where they were needed.

For those cases where correlktions have been presented by the author

in terms of pressure drop, the conversion from pressure drop to velocity

involved the terms N I and N,. as defined by the table of nomenclature.

The term N, is a measure of the effectiveness with which pressure energy

(pressure drop) is converted into kinetic energy of liquid relative to

the gas into which the liquid is ejected. This value will usually be

close to unity for all nozzles, differing therefrom only because of wall

friction losses in the nozzle. Any losses will result in a value of N.,

that is larger than unity. The term N,) relates pressure energy to kinetic

energy as defined by uJ. lor stationary axial flow nozzles, N., will be

identical with N., and both will be close to unity. For cases where u

is not an actual velocity (as with swirl nozzles), N,. may differ radi-

cally from N.,. For a swirl nozzle for example, N.J will probably be of

the order of 10, ranging from 4 to 20 (the greater the relative magnitude

of the tangential velocity component, the larger N,,). To show what effect

such a difference in N. ) would have the size prediction in the case of

several correlations has been given for assumed values of N,, of both

1 and 10. It should be noted, however, that N., is a specific number

which is determined primarily by the geometry of the nozzle and is not

subject to arbitrary choice. In those cases where N., appears in an

author's correlation, it should probably be replaced with the actual

value applying to tuat author's nozzle geometry for all equations that

are expressed in terms of u,.
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In presenting the size predictions, the calculations have been based

on the expanded relationship presented by the author. The same predicted

size is obtained if the calculation is based on the generalized format,

provided those variables comprising the "k" term are also given the values

specified in Table VI.

An alternative method of prediction is possible, which consists of

treating the "k" term as a constant on the grounds that the "k" term

should be a constant and that the remaining variables in the "k" term

reflect inherent errors in the author's correlations or measurements. As

,.as previously indicated, this independence of k of other variables is a

reasonable postulate, with the exception of any variable that might re-

flect the effect of gas density To obtain the "constant" value of k it

is necessary to substitute for all variables comprising k in the general-

ized format the average value of each variable during the author's inves-

tigation. This value of k would then be treated as a constant in making

any size predictions for other conditions. Such a method would probably

yield a somewhat better value for the predicted sizes; it was not done

here because of the difficulty of assessing representative average values

for variables in somc of the investigations.

E. Miscellaneous Data and Comments

It is generally agreed that gas viscosity has little effect on the

atomization process. The data of Popov (1956) are especially conclusive

on this score, since he varied his gas viscosity from that of neon

(/s = 0.0311 cp) to that of acetylene (ja - 0.0102 cp) and found that

drop size varied as the 0.08 power of gas viscosity (power ranged from

0.045 to 0.12) Considering that gas viscosity cannot normally be varied

by more than a threefold range in practice, the variation of drop size

due to gas viscosity cannot be over 10 percent.

De Corso (1960) reports that, for swirl nozzles discharging into a

tank, the particle size (D 3 2 ) obtained is a minimum at a tank pressure

of approximately 1 atm, as shown below:

Value of D3 2 , microns
for Tank Pressures

"-Fuel Injection 0.5 paia 14.5 psia 114.5 psi.
Pressure, psi. .... .

25 206.5 150 213
100 106.6 75.2 109.9
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De Corso explains this on the grounds that the coalescence of fine drops

increases at the highest tank pressure because the spray is also confined

to a smaller volume at the high pressure. It should be noted, however,

that the spread in mean particle size, D32, over the entire t;.,nk pressure

range is only ±20 percent. Dombrowski and Hooper (1962) also report a

similar trend of particle size (D3 d) with tank pressure for impinging-jet

nozzles. In their case the spread in particle size was only ±8 percent

over the entire pressure range (28 in. Hg vacuum to 300 psig) with the

minimum size occurring at a tank pressure of 10 atm.

Nelson and Stevens (1961) reported no effect on atomization when the

nitrogen atmosphere, into which a swirl nozzle sprayed, was replaced with

helium. They also reported that a smoother nozzle gave a somewhat finer

spray.

Bitron (1955) is the only investigator who reports specific data on

pneumatic atomization at supersonic velocities. Others [such as Wigg

(1960)] may have operated at supersonic velocities but did not distinguish

this fact in reporting their data. Bitron (1955), atomizing dibutyl

phthalate with an external mix pneumatic atomizer (in which the air nozzle

consisted of a de Laval nozzle), reported that the Sauter mean diameter,

D3 2 , agreed within 15 percent of values predicted from the Nukiyama-

Tanasawa (1939) equation at Mach numbers up to 2. It should be noted

that his velocity increase was attained by going to a higher nozzle inlet

gas pressure, rather than discharging into a lower downstream pressure.

His data are summarized below.

RIN NU•f 1 2 3 4 5
Nozzle dimensions,* mm

Throat diameter 2.72 2.77 2.81 2.86 2.94

Mouth diameter 2.84 3.05 3.24 3.46 3.83
Upstream air pressure, atm. abs. 3 4 5 6 8
Air flow rate, g/saec 3.6 4.8 6.0 7.2 9.6
Liquid flow rate, mg/sec 3.3 4.4 5. 6.6 8.8
Exit air velocity from nozzle. m/sec 460 520 S70 620 680
Air temperature, °C

Upstream 110 145 170 20C 245
Mouth tcalculated) 8 7 7 11 13

Sduter mean diameter, D3 2 , microns

Measuredt 7.2 7.0 6.6 7.3 5.7
(7.5) (8.9) (8.6) (6.4)

Calculated [Nukiyama-Tanseawa (19394) 7.2 6.3 5.7 5.3 4.8

Covergeat come angle was 180. divergent, 5°; Neotle diararged to atmosaero in all came
Values is parentheses includa single conspicuoe•ly large drops (25 to 42 mscrosa) that

ware igaored in othr values givan.
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F. Discussion

It is generally agreed that ia a qualitative sense all the atomiza-

tion mechanisms are similar for the various types of mechanical atomizers

at the high capacities or velocities usually used for fine atomization

(i.e., once the region where gravitational effects are predominant is

passed). There are, however, some basic differences between the various

types of atomizers aside from specific differences in geometry. In the

hydraulic (and rotary) nozzles, the liquid jet is accelerated back toward

the liquid nozzle by the drag of the gas into which the liquid is ejected.

In pneumatic nozzles, the liquid is accelerated away from the liquid nozzle

by the gas drag. Therefore, one might expect that recombinatiop of drops

might be less significant with pneumatic nozzles than with hydraulic noz-

zles. With hydraulic nozzles turbulence is introduced through the liquid

stream, thence by the liquid to the ambient gas. In pneumatic nozzles,

turbulence is introduced through the gas stream even though it would be

possible to introduce it thrmugh the liquid stream as well.

Since the correlations for all types of atomizing nozzles are ex-

pressed in terms of relative liquid-tc-gas velocities, one might expect

the correlations to be directly comparable. If atomization mechanisms

were the same, one might even expect all the relations to be similar

except for geometric factors. Factors such as those indicated above,

however, can produce basic differences in mechanism and hence differences

in the nature of the relationships between the various types of atomiz-

ing devices.

In Tables III-V the degree of agreement between the results of var-

ious investigators can be seen most readily by either of two approaches:

(1) by comparing the exponents on specific variables in the expanded

relationship for mean particle diameter or (2) by comparing the size

predicted from each correlation at standard conditions (given in the two

columns just preceding the "Remarks" column). Table VII has been pre-

pared to provide a more convenient comparison of exponents by summarizing

t the exponents for each of the more important variables.

From Table VII it is apparent that the effect of the variables in-

dicated by the various ix. estigators differs greatly even to the extent

of showing opposite trends (reversed sign of exponent). Part of this

discrepancy is fictitious due to the fact that the experimenter did not

actually vary a term but arbitrarily introduced it into his correlation
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De Corso explains this on the grounds that the coalescence of fine drops

increases at the highest tank pressure because the spray is also confined

to a smaller volume at the high pressure. It should be noted, however,

that the spread in mean particle size, D3 2 , over the entire tank pressure

range is only ±20 percent. Dombrowski and Hooper (1962) also report a

similar trend of particle size (D3 2 ) with tank pressure for impinging-jet

nozzles. In their case the spread in particle size was only ±8 percent

over the entire press.re range (28 in. Fig vacuum to 300 psig) with the

minimuml size ocrurring at a tank pressure of 10 atm.

Nelson and Stevens (1961) reported no effect on atomization when the

nitrogen atmosphere, iihto which a swirl nozzle sprayed, was replaced with

helium. They also reported that a smoothe.r nozzle gave a somewhat finer

spray.

Bitron (1955) is the only investigator who reports specific data on

pneumatic atomizatio-i at supersonic velocities. Others [such as Wigg

(1960)) may have operated at supersonic velocities but did not distinfuish

this fact in reporting their data. Bitron (1955), atomizing dibutyl

phthalate with an external mix pneumatic atomizer (in which the air nozzle

consisted of a de Laval nozzle), reported that the Sauter mean diameter,

D3 2 , agreed within 15 percent of values predicted from the Nukiyama-

Tanasawa (1939) equation at Mach numbers up to 2. It should be noted

that his velocity increase was attained by going to a higher nozzle inlet

gas pressure, rather than discharging into a lower downstream pressure.

His data are summarized below.

N N`UMHEi 1 2 3 4 5

Nozzle dimenniona,* mm

Throat diameter 2.72 2.77 2.81 2.86 2.94

Mouth diameter 2.84 3.05 3.24 3.46 3.83

Upstream air pressure, atm. abs. 3 4 5 6 8

Air flow rats, g/sec 3.6 4.8 6.0 7.2 9.6

Liquid flow rate, mg/sec 3.3 4.4 5.5 6.6 8.8

Exit air velocity from nozzle, m/sec 460 520 570 620 680
Air temperature, °C

Upstream 10 145 170 200 245

Mouth (calculated) 8 7 7 II 13

Sauter mean diameter, D 32' microns

Measuredt 72 7.0 6.a 73 57
(7.5) (8.9) (8.6) (6.4)

Calculated [Nukiyama-Tanamewa (1939) 7.2 6.3 5.7 5.3 4.8

Convergent coma sagle was 3". divergent, SO; Mosile discharged to atmosphere in all cases
SValues in parentheses include single conspicuously large dreea (25 te 42 micros@) that
were ignored is other values gives.
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is a variable. This is common for gas density and viscosity. Liquid

density and surface tension can usually be varied over only a threefold

range, that is, unless molten salts or metals are used. Practical con-

siderations may also limit variations in nozzle size. Most investisators,

however, could and did vary velocity widely. Even here a wide discrepancy

is apparent, even within specific types of atomizers.

By comparing the size predicted for each correlation at each of two

velocity levels in Tables Ill-V. it is apparent that the agreement is at

best within a twofold to threefold range-some values varying by as much

as a factor of over ten at a given velocity level. Part of this lack of

agreement may reflect the fact that the correlation did not cover all the

variables, and hence the correlation cannot be extrapolated safely. How-

ever, this effect should be minimal, since the standard conditions were

chosen such that they would be close to or within the range of conditions

used by most of the investigators. The one exception is the standard

surface tension which was chosen as a round 100 dvnes/cm, a value somewhdt

higher than would correspond to the surface tension of the liquids used

by most investigators. However, since mean drop size at most would appear

to be a square root function of surface tension, this difference in sur-

face tension values could not account for ever - twofold spread in the data.

It is likely that a large part of the differences between investiga-

tors may be attributed to problems in obtaining reliable drop size mea-

surements. Considering the combined problems of representative sampling,

possible evaporation, drop collection (where applicable), actual size

measurement, and interpretation of data in terms of specific mean size,

a twofold spread in mean reported drop size is not unlikely, and might be

even greater. Other factors that could be involved represent intangibles,

which were neither controlled nor reported, such as detailed geometry,

especially upstream of the atomization point, and resultant turbulence

levels in both liquid and gas streams.

In general, the best agreement in drop-size data appears to be for

rotary or spinning disk atomizers. This agreement may be misleading,

however, since there are relatively few investigations. Several of the

correlations indicated in Table V are actually based largely on the data

of Walton and Prewett (1949). These were data at very low liquid capac-

ities where the rotary (spinning disk) nozzle is actually a centrifugal

adaptation of the pendant drop. If the term 9L in Equation 3 is replaced

35



with the acceleration in a centrifugal field, u,(Dd2 .o

D z 2.3( 3ucT D )L (19)

It will be observed that this equation agrees with most of the relation-

ships given in Table V for the spinning disk for low atomization rates,

even to the magnitude of the constant. This is especially inter,.sting

since the low-rate equations in Table V were derived primarily on theo-

retical grounds based on considerations of 'iquid jet stability in the

presence of surface disturbances. At the standard conditions of Table VI,

drop sizes of 730 and 73 microns would be predicted from Equation 19 for

disk tip speeds of 1000 and 10,000 cm/sec, respectively.

Fraser, Dombrowski, and Routley (1963) and Friedman, Gluckert and

Marshall (1952) conducted investigations in which higher liquid flow rates
were used and in which the fluid dynamics might be expected to influence

degree of atomization rather than the quasi-static considerations of a

pendant drop. Fraser et al., however, actually used a combination spin-
ning disk and pneumatic atomizer which is unique in a geometric sense.

Friedman et al., covered a radial film Peynolds number (i7/M) range of 300

to 2800. At a low disk speed, the size predicted from their correlation

is of the same order as predicted from the pendant drop-Lype of relation-

ships; at the high disk speed, the drop size is considerably larger.

"However, the insensitivity of drop size to surface tension that they

report appears unusual.

* The second best agreement in the data of various investigations ap-

pears to be in the area of hydraulic swirl nozzles. These have actually

been investigated more extensively than others because of their wide use

in liquid fuel atomization. However, Turner and Moulton (1953) report a

large effect for surface tension which is unusual as compared with the

effect found by most other investigators. From a weighted average of all

the data, the following is a reasonable representation of the performance

of swirl nozzles (which is probably good to better than ±50 percent):

D3 2  5.5
D-g (NI. 1,)°" 2 0(NW.s,)0'2 (50

3



or, by rearranging terms,

5.-SDO Ss s 200. 25
0 =j

D 2 . (21)
u0. 70 0. 45

For the standard conditions this equation would pit-dict mean drop diameters

of 155 and 31 microns at relative velocities of 1000 and 10,000 cm/sec,

respectively. No formal evaluation was used to obtain Equation 20, the

weighting being based on individual judgment of the merit of each inves-

tigator's result. Equation 20 also neglects any effect of the density

of gas into which the liquid is sprayed. As will be shown later this

9., effect is controversial but is probably small in this case.

The data for impinging jets show reasonable agreement but are not as

extensive as the data for swirl nozzles. Mugele's (1960) relationship

gives a reasonably good average representation.

The greatest disagreement appears to exist in the data for simple

r hydraulic nozzles. This is most apparent in comparing predicted sizes

for the standard conditions. Although the disagreement is still great,

the agreement is somewhat better if the fan spray data are considered

separately. The very large sizes predicted from the relationships of

some investigators using simple circular nozzles [Panasenkov (1951),

Popov (1956), Tanasawa and Toyoda (1956), and Tanasawa and Kobayasai

(1955)1 stand out particularly. This might imply that turbulence of

the liquid jet might play a predominant role in the degree of atomiza-

tion. This is a factor which was practically never controlled or measured

by the various investigators. With impinging jets and swirl jets, the

nozzle geometry itself probably exerts an indirect control on turbulence.

With a simple jet, however, any uncontrolled upstream turbulence might

be expected to have a greater relative effect. Dombrowski and Hooper

(1964) have reported major differences (one to threefold on particle size)

in atomization with laminar and turbulent jets.

The effect of gas properties on atomization is an area in which there

are comparatively few data. As mentioned in a previous section, the

effect of gas viscosity is generally agreed to be very small. For

hydraulic nozzles the effect of gas density appears to be variable but

small. For pneumatic nozzles, however, the effect of gas density would

appear to be large as indicated by the values given in Table VII. Even
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in those csnes, however, the effect of gas density is not completely

separate becaus,- gas density changes are usuallv accompanied by changes

in compression ratio with resultant shock phenomena. *eiss and Worsham

(1959) report an effect of gas density in terms of gas pressure. For

the range of pressure covered by them, it can be shown that this effect

is the equivalent of a 40.4 power on gas density insofar as the effect

on mean drop size is concerned. Weiss and Worsham used an atomizing

arrangement which might be construed as a combination of pneumatic and

hydraulic atomization.

In the case of pneumatic nozzles there is considerable confusion

concerning the calculation of the relative gas velocity. Some authors

4 have calculated velocity based on measured mass flow rate and gas density

calculated at atmospheric tc.aIperature and pressure. sot jave used sonic

velocity (corresponding to the ambient temperature) for all pressure

t drops above the critical; others, like Bitron (1955), have apparent!y

used isentropic expansion velocities; and some are ambiguous on this

point. The effective gas density is similarly confused and unresolved.

p At the present time there are not sufficient data on atomization at high

compresssion ratios to resolve the question. The problem is further

complicated by the presence of shock waves in supersonic jets (or in

underexpanded free jets). The effective gas density and velocity in

such cases would also be expected to be different between internal and

external mix nozzles. If the kinetic energy of the gas is the control-

ling factor, then the maximum value attained by the product p u2 in the

isentropic expansion of a gas may be a correct measure of the attainable

atomization effect. This value occurs at an expansion slightly beyond

that corresponding to the critical, which is required for sonic velocity

to be achieved.

It is difficult to give a recommended equation for pneumatic atom-

ization. Kim (1959), Mugele (1960) and Nukiyama and Tanasawa (1939) all

seem to give results of the same order at the higher velocities. Wigg

(1960) also gives reasonable results but on the finer side with respect

to drop size. The effect of nozzle size on drop size is the most con-

fused. Kim (1959) reports a marked effect of nozzle size but in the

direction of reduced particle size when a larger nozzle size is used.

which does not seem reasonable. Since in varying nozzle size he also

varied other geometric factors at the same time, it is possible that the

apparent role he assigns to nozzle size is actually a measure of another

geometric factor.
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The following two factors I 3 a negligible effect at low values of

the factor but become significant at high values: (1) liquid viscosity in

hydraulic nozzles and (2) liquid-to-gas ratio, or liquid loading, in pneu-

matic atomizers. These factors could be allowed for in terms of a correc-

tion factor that approaches unity at low values of the factor. Simple

functions that could be used for this purpose are (I + kxW), (1 + kx)',

or [exp (kx')}, where k is a constant and x is a dimensionless group con-

taining the factor. For the effect of liquid viscosity, x could be the

Ohnesorge number, NOhy,; for the effect of liquid loading, x could be

either (w 1w) or (q /q,). Various investigators have used such factors

but not as extensively as possible. Kim (1959) used the last of these

functions (the exponential function) to extrapolate his raw data to zero

liquid loading. He then expressed his final results, including the effect

of loading, in terms of a function of the first type (power function added

to 1) for reasons which were not indicated and are not apparent.

Some investigators have used loading factors as direct multiplicative

power functions in expressing the effect on particle size [e.g., Gretz-

inger and Marshall (1961) and Plit (1962)1. It is dangerous to extrapolate
such correlations since they would indicate either a zero or an infinite

size when extrapolated to a zero value of the factor. For example, the

actual data of Gretzinger and Marshall show drop size becoming independent

of loading for ratios (v j/w less than 0.1. Consequently, their cor-

relation can only hold for loadings (wv /W) greater than 0.1. In their

case liquid loading and air gap clearance were not varied independently.
Hence, some of the apparent loading effect could actually be a diameter

or air-gap clearance effect.

Although size distribution in addition to mean size is an important

factor, comparatively few data are reported on size distribution.

Mugele (1960) gives a summary of such data. Many of the data are given

as a ratio between two means or between a mean and the maximum drop size.

Tanasawa et al., (1955-57) report the maximum drop size as being two to

three times the Sauter diameter. Friedman et al., (1952) report that

geometric standard deviations are mostly 1.4 to 2.0 for rotary atomizers.

The widest range of sizes is probably produced by pneumatic nozzles and

the most uniform by rotary atomizers. Hydraulic nozzles usually give a

wide distribution of sizes but not quite ta wide as pneumatic nozzles.
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It is generally known [..g., Marshall (1954)] that the efficiency

of atomization is low (under one percent) in terms of the fraction of

applied energy utilized in creation of new surface. Because of the wide

spread in data on mean particle size for the various investigators, no

further estimates have been made on relative power consumption in each

case.

ji Rotary atomizers are basically hydraulic units in which the liquid

pump has been combined with the nozzle. Consequently, one might expect

I that the power consumption for both hydraulic and rotary atomizers would

be of the same order. In the case of rotary atomizers the additional

power to overcome air friction would tend to be compensated for Ly a

more direct application of energy to liquid with lower coupling or 'rans-

t mission losses. Pneumatic nozzles, however, will have a considerably

higher power consumption because air must be accelerated in addition to

the liquid. The lower air density, however, permits the attainment of

considerably higher relative velocities without incurring the high pres-

sures that would be necessary to attain a comparable velocity with a

hydraulic nozzle.

The efficiency of a hydraulic atomizer can be expressed in terms of

pressure drop as follows:

f71 = (6oi /D 3 2 )/Ap . (22)

This is obtained by taking the ratio of energy represented by the total

surface area generated to the energy needed to elevate the pressure of

the liquid by Ap. By substituting u in, -p,

77A 12/Na,. uap D32  (12/N.,)/(D3 2 J~poIu,) = (22/Nv,W/lNw,,) 32.

(23)

where the subscript 32 indicates that the particle Weber number is based

on the Sauter diameter.* Equation 23 can also be written

7 (12/N,,)(p 6/pi )/(NWI) 3 2  (24)

The aubscript j bae also bees, asumed to be oymosymme with p iselar u the drop propert ies are coeersed.
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Since N, differs from unity because of losses within the nozzle system,

one could argue that a more basic assessment of atomization efficiency is

to set Nt equal to unity on the grounds that those losses are not directly

part of the atomization process itself. Hence

774 = 12/(NW, 1)2- 12(p,/pj)/(Ng,S)32 (25)

Equation 25 would also hold for a rotary atomizer. As a first ap-

proximation one can assune that U, = ud.

For a pneumatic atomizer, assuming that all the energy is provided

in accelerating or moving the gas phase, similar reasoning will lead to

74 = 12ca ID3 2u2Pl(q /q, I) =12(qlqt /lNreg)32

=12(qj~qg)(pj/p8/(NFP)32 = 12(wwg)!(Nj,,•) 3 2  (26)

which differs from Equation 25 only by the loading ratio (v /i 1.
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CYLINDRICAL TYPE

FAN SPRAY TYPE

(a) SIMPLE JET

(b) IMPINGING JET

fI*QUI~1 GROOVES

L IQ U ID _.V
;A A

i-1 3 -A I~ A
'.1-I--ORAIR CORE

SECTION 8-8

,-SPILL
-AiR CORE

S A,.T~eI SCTION Gn-9
aA; Toeie wee 11or.•.••

low jirml to

SECTION A-A SECTION A-A
TANGENTIAL-ENTRY TYPE GROOVED On VANEO-ENTRY TYPE

(c) SWIRL JET ".0ow-,

FIG. I TYPES OF HYDRAULIC ATOMIZING NOZZLES
(a) Simple Jet
(b) Impinging Jet
(c) Swirl Jet
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LIQUID LIQUD

SINGLE HEAD DOUB'.E HEAD

(a) SIMPLE FILM TYPE
(Dish or saucer illustrated)

LIQUID

RADIAL VANES

SECTION AA

A A

Dd

(b) VANED FILM TYPE

•,LIQUID

PERFORATIONS
OR HOLES*

"-.. LOTT[O TYPE 12 S L5.IM ,
EXCEPT THAT HOLES AME

EPLACED BY SLOT,3
d"-- PADALLEL TO AXIS.

(c) PERFORATED HEA!) TYPE

FIG. 3 TYPES OF ROTARY (SPINNING DISK) ATOMIZERS
(a) Simple Film Type
(b) Vaned Film Type
(c) Perforated Head Type
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Table I

SUMMARY OF ATOMIZING TECHNI

GENERAL TECHNIQUE TYPE VARIATIONS OR EXAMPLES
(Alternate Names)

Hydraulic Simple (axial) jets Stationary Fluid pressure is converted into fluid velocity by passage of flu
(pressure) ottgjet instability arising from relative velocity of liquid to the

Rotating or moving jet, the relative velocity is increased by the physical motion of
Fan Spray noncircular orifice and/or orifice feed ch amber.

Impinging jets Impinging liquid jets Collision of two simple jets or impingement of a simple jet on a
Impingement of liquid jet atomizer may produce a bi-modal Mize distribution.
on solid surface

Swirl nozzle Tangential entry A circular orifice is preceded by a chamber in which the liquid i
(centrifugal) Vaned or grooved entry groovesorvanes. A hollow conical sheet is produced. The non-cl

Pneumatic Internal mix The high relative velocity between gas and liquid is achieved by
(two- phase or E l mix mixed prior to the uas expansion through the nozzle in the inter
two fluid) Cxternat mix atomization is possible at relatively low pressure levels.Combination mix

Rotary Film (liquid flows Simple (flat, dishe,-. Liquid is introduced at the center of a rotating disk and flows
(spinning disk or parallel to disk cuppedor saucer; -le disk as a thin sheet. In the head type, a liquid leaves as a li
cup) surface) or double) ally a hydraulic technique in which the pump and nozzle are combi

Vaned tively free from plufging problems. Fineness of atomization is I
Vaned___ _ _techniques, such limits can be avoided by using pumps with stage

Head or basket Perforated
(liquid flows normal Slotted
to disk surface)

Vibrational Mechanical Vibrating tube A liquid is fed to or caused to flow over a surface which vibrat
Vibrating reed Uniform drops may be produced at low feed rates. This techniquc

Sonic Compressed air siren
Hsrtman whistle

Ultrasonic Solid-state oscillators

Explosive . A bulk liquid is exposed to expanding gas products from a detona
sition of the liquid may occur because of the high temperature.

Electrostatic Low intensity Atomization is th'e result The li quid et or film is exposed to an electric field. The for
of Rayleigh instability, nique s ratively undeveloped. Much of present day research i
in which presence of spray painting probably uses an electrpstatic field for depositi
charge in surface counter-
acts surface tension

High intensity Atomization claimed to be
the result of stress suf-
ficient to overcome ten-
sile strength (or chemi-
cal bonds) of liquid

Gravitational Pendant or hanging Quasi-static emission of These are classic examples of common atomization processes in na
drop a drop from a wetted sur-

face, as from the end of
a burette (discontinuous
surface) or from the
underside of a horizontal
surfaced (continuous
surface)

Dripping drop Periodic emission of
drops from the bottom
aide of a surface to
which a liquid is fed
continuously as in drip-
ping of water from eaves

Falling or splashing Satellite drops generated
drop (or object) due to impact of object

on a liquid surface

Film bursting Bursting bubble Generation of droplets resr.lts from the sudden failure of a stre

Flashing fluid
(superheated)

00, A .,---. ' i • -



Table I

IMARY OF ATOMIZING TECHNIQUES

DESCRIPTION AND CHARACTERISTICS

d velocity by passage of fluid through a plain orifice or nozzle to produce a rod-like stream. Atomization occurs as a result of a
velocity of liquid to the ambient gas. This technique requires high liquid pressure3 for fine atomization. In a rotating or moving

ed by the physical motion of the atomizing nozzle (e.g., a spray nozzle mounted on an airplane), Fan sprays are produced y use of a
ed c- m'r.

ement ofa simple jet on a deflecting surface produces a sheet of liquid which subsequently breaks up into drops. This type ofI distribution,

:, P .r in which the li-uid is given a tangential velocity component either by a Lae,gential liquid entry t.r by a series of inclined
7. produced. Th- non-clog feature of the tangential type results from the ability to use larger apertures for a given capacity.

a and liquid is achieved by acceleration of the gas to high velocity rather than acceleration of the liquid. Gas and liquid are
-- ugh the nozzle in the internal-mix type and after the gas expansion in the external-mix type. Power consumption is high but fine
low pressure levels.

a rotating disk and flowb. outward by action of the centrifugal force field. In the film type, a liquid leaves the outer edge of the
pe a liquid lepves as a ligament or it may form a series of sheets through the peripheral holes or slits in the rim. This is basic-
,epump and nozzle are combined as an integral unit. The film type is capableof producing uniform drops at low capacity and is rela-
FineFness of atomization is limited because of rotational speed limits imposed by the strength of structural materials. In hydraulic
d by using pumps with staged impellers.

over a surface which vibrates at a prescribed frequency and amplitude. The droplet size is primarily a function of the frequency.
feed rates. This technique is relatively undeveloped.

gas products from a detonating system. This is probably a special case or extension of the pneumatic technique. Chemical decompo-
of the high temperature. Although atomization may be fine, coarse debris may also be present.

n electric field. The force on the liquid may be due to either free charges in the surface or to liquid polarization. This tech-
of present day research is aimed at rocket propulsion by charged droplets generated in high vacuum. Conventional electrostatic

,static field for deposition of drops on surface rather than in generation of the drops themselves.

tomization processes in nature. They are; however, normally limited to either low-rate or coarse atomization.

a sudden failure of a stresaed film of liquid. This is a low-capacity atomizing technique.



Table II

RANGE OF EXPERIMENTAL CMorDIToN.•

ATOMIZER mTAILS LIQUID POPERTIES GAs PROVEZTI IS*

Dieaeters, em
INVESTIGATOR De.alty Viscomity Strface puceexue"Type Other Detalls Chamieol Copomp tloa p$ land. CAapoape utm .ex.

~ , D ~. m nnioa dyaoa/nn ba

ambro.ski eand Impininag 0.053 2 jets at llO° Eater 1.0 1.0 73 air 0.06-20.
Hooper (1962) jeta Ethyl alcohol 0.79 1.1 24 "actly

48 wt. %glycerin in water 1.12 5.5 68 1-20

Dembroxali and Impinging 0.05 2 Ieaoner jets at Water (0.5% nisrosane d&t) a ,
Hooper (1964) jet. 50 to 140

2 turbulent jet@
at SO to 1400

Fraser and Fan jet exit oalt varied Water air 1
Eisaeklm (1956) from 108* to 120*

Fraser, Eisaeklm Fan jet Dyed liquid 0.8-1 28-73 air -
and Dasbreoski
(195?) 1
Fraser, I~.bro.- Spinmis 10o air ajet 0.2 cuin. oils (three types) 0.81-0.83 4.137 29-35 air

Aki and fotlep disk and wt orm p o p 7(11.2)

(1963) pa..e..tic n ring
ad ... nular ting,. combinead

Friedman. Glocert 6.inni'g 2.5.10 oaed 13 differ'ot A 1 72 air
end Marshall di ar disks; L ran ed B 1:.37 1201-0 7S

(1952) from 0.8vto 4on C 1.42 9040. 76
D (probably molten salt) 1.41 1.6 100

Gretsinger and Pneumakic-
Marshal I (1961) convergent 0.14-0.55 0.37-0.71 3 nozazl. for each eater (with dye) 1.0 1.0 72 air 10 • O _.8 2;A .33 e (air) (2-81

air an outside

Paeumatic- 0.24-0.32 3 nhasles; air in
ispiageeot center

itarmon (1955) Stationary used deta of Lea (1932), Lee and Spencer alcohol
j at (1933) and Kuehn (1925) aoulinediaGal oil

kerosene

Hasseo and Fan jet 0.034-0.134 A. - 0.0009-0.014 waxea (90 to 125c) 0.75-0.85' 3-21 25-31 air I1
Miarahi (4961) (11. 1 a p ater (12 to 15C) 1.0 1.1-1.2 74aq cm; 118 apray 28s CaCi 2 in water (25

6
C) 1.27 2.7 85

di-ethylphthalata (20
0
C) 1.12 12.6 38

keroseaa (UPC) 0.8 2 28

Il'yashenko and Smirl jet fuel il a (

TaIantov (1964) sir (?) 10)

Joyce (1949).1953) Swirl jot fuel oil 2-16 air 1

Kim (19591 Pneuaatic 0.14-0.56 0.3-0.7 Mostly concentric mixtures of wax with 0.8-1 1-50 30-50 air
with air on cat- polyethylene (air)
side; D " 0.17- ir (1-6)
0.67 ca _ _ __

Knight (1955) Swirl jet uced data of Needhem 11946) and Lubbock fuel oil 0.8 0?) 1.8 ? air (?) 1 (0)
______and Bomen (1948)

etg H•s" ad Stationary No 8002 "Teejat" 20% IUr in Volsicol NR-70 1.08 9 34 air I
L i (1940) and moi.ug (Chicago Spraying 20% DOT in Sovacide 5448 1.04 5.25 42

fan jet Syatma Co.) sater 1.00 1 72

Korabyaai INotatinq 0.04-0.12 slycerin/eater (0 to 60 1.0-1.16 1-13 74-65 air
(1960)(1961) simpla Jat wt %)

ethyl alcohol/mater I I 35-54
(0 to 30 wt %)

K...etaro and Impinging 0.08-0.34 jet iapiga an..- star 1 1 72 air
Talef (1958) je t ally an deflect-

Ing cone

Longwel) (1943) Smirl jet foel oil

Mayer (1961) Theoretical used data of Weiaa nod Worsham (1958)
Mclrviae (19571 Swirl jet used extensive data from literature; also a -crosa/mater solutions 1.1.3 0.9-105. 60-67 air 1

r an aane teast on 22 chambers with S ori- (ith 3.5% nigraaime dye)
fice diaeters ranging frao
D. J 0.09-0.3 cm

Merriogtom and Stationary 0.08-0.8 11 liquids 1-1.77 0.5-1260 25-73 airRicharis" (19471 tovi|jt .-.

Migele (1960) All types used data of many inveatigatora

Nele and Sir1 jet 0.035-0,21" Rypee. nozzleas cylohexane, neectyl nitan
Steneo (1961) (Sprayig Systems alcohol , carbon tetra- h alian

Co,), 1pray agle chloride meter. nitro-
52 91 ban *ane* eilis,

t etrabreethane



Table 11

BIIMENTAL CONDITIONS USED BY INNESTM(ATOP.S

GAS PRpiUrnzs OPIgtATIRG CONDITIONS DROP DImINfTE

Di sk Uqipid
L id not.. Volsci ty R''"

pr.... r. Taupers UI Li. 14 P.... isesI at Metasl. Is. Limid a Lqeaidz. RM
Cepo.sitlee .%.. %a r. NXY p. D ig V. t 8 Oe

1
lesise4 Typ M.Oei t~d. Mszksd .

air 0.06-20. 1s 25-120 1600-4200 0 32 120-180 sdicro-gecond flesk C *0. 91: R1 FN 1. 17
"mosly ph eof &ph&

__ _ _ 1.20 1_ _ 1_ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

air I oo 70-950D1 10-SO micro-secmed flesk Nozzles were 20 alea#
sir I rom 30-950032 10050 photograp (Q ); jet ande turbulent

in~sserting wires into

sir I room 2.'-.1(- 14035~40 032 04-280 drops collec-.ed in "M"' oritl fr'o 0.33 to

oil. pkotoerapke 2.1- tC, frt 0.60 to"costedo (r7 p 0.95)

air 1 roem 45-10S 0 32 "W4 ,i~ed from 0.5 toO

ar I room0 40- 160 I1500- 730.3300 29S0.2&)0.3 0. 26-6 03 20-300 light asaorptio.
- (air) (1-1.2) 6.4 1 5000 (mosatly3

1 1 3000-10.000)

air 1 room M' 4-510 660. 640-9600 D032 69-776 photographed petro- FI)A ranged fma% 343 to
10,0001 11-20 !ets or .s~iesivae As'for liquid A; P7 ranged

Pea.. from 0.4 to 22 (C)/(eec)(m.)

vs sr 1 rcoom 0.5-5 -'30,000 0.06-1 D 5-3 conigadse
ai) (2-8) (room) a.3 cut og ona-tyo

dereszdoe is col-
lected drops

air 1 room 20- 140 1400-4600 032 40-300 mticroscopic, count of C - 0.8-0.94;
slide easqoed to peroy .. 1
for liquids; sieviag IN" 0.2-3.8
with dry ice, for maesee
microscopic routet of
slide covered with. oil
mid of stain: us .-sorkeit paper for ester

air 1') 0()

air I room S-40 12-125 032 50-200

sir 1 room 0.1-16 7500-30,000 0.02-17 Do, 6-350 micrsoi on
(air) (1-6) (room) saod cpi i o ung

air () 1?)2-2001' So-1000

sir 1 monom 20-100 0-8000 0 33 70-300 deposition on slides
sand microscopic
count (**ter drops
required carbon
coated slides)

air " oom 0.1-6 400-10,000 0 33 60-2000 collected -on oil-
covered slide.
pkotographed. and
coosnted

* r 1 room 1000- 5000 (1.. 200-500OO sot speciflied

1 room 30-300 0 32 20-300 collected om slides. Data were rm ilooe-
covered with solvemit sle (loe carectna stics ean
photographed. and spray pettern. Limited drop
count ed lectron. sine data were not ado-
ically qoately correlated.

r room 100-680 500-10,000 0 802000 collected on blot- Aircraft speed& op to

D J. size 6000 av o we

Ien 1 less 100-15000 4010 dos olot I
mm 1 ~id d nit~rogen

25 C U s on

we sieved



Table 11 (Concluded)

RANGE OF EXPERIMENTAL COINDITIONS USED BY I

ATOWl P DITAILS LIQUI O PROPERTIES GAS pRPoIE iTr

Diaosters,058 f.
INVtUTIGA1DR other Details C ..pestles .... - t-

T Dy erD D8  t/ie P, Csetipoi, dns/s/ t.

akuiyma and
Tisms&.a (1939) Pneumatic 0.02-0.3 0,2.0.S concentric. in- "olutions of ethanol, 1.0-1.2 1-25 34-73 air room

tarsal mix ethanol. an.d glycerin in (air) (room)
.ster

Puaaenoenk Stationary 0.034-0.12 cylindricalnossie. water, starch solution. 1-120 air 1 rose
(1951) jet r diameters machine oil

long

Pesrin (9d d Sdinin' theoretical analysisLeeleor (1962) d~insh____

Piut (1962) Pneumatic 0.7-2.0 1.2-2.5 internal snd exter. water; monoethanolaeioe: air 0 rosm
noa mix nozzles potassism carbonate (air) (1-1.03)? (room)

solutions

Popov (1956) Simple jet 0.06-0.10 eater 1.0 1.0 73 ir(;t O.018cp) I rosm
carbon tetrachloride 1.0 1.6 26 cet llene
methanol 0.63 0.79 23 As 0.010 cp) I rosm

a• 0.031 ep) 1 ros

Pelseo. et ol All used date of maoy investigators

(1957)

f•adcliffe Swirl jet 0.05-0.18 carbon tetrachloride. 0.75.1.6 0.5-25 air I room
(1954)(1955) gasoline, kerosene, kero-

sene and oil "olutions

Tanaso a. d Soul jet 0.05-0.42 glycerine/vater soluoions 1-42 51-75 air 1 room 0
Kobaye&i (195$) gasolin e 0.750 0.35 23

ferosens 0.802 2.84 30
heavy oil 0.895 3.1 (?) 31

Tomaseaa, Sasaki, Iapinging 0.04-0.10 hypodermic tubing ethyl alcohol/eater solu. 0.88.1 1.2-2.6 28-73 air I ros,
and Nagai (1957) jet po:ited at each cions

other flycerin/eater solutions 1.2-31 63-73
herosine 0.884 6.3 29
kerosine/lube si1 0.870 21. 30
(62. 5Y/37.53%)

Tsosean. and Stationary 0.027 long cylindrical eases (s00
5

C) 0.76.0.90 1.4-23 22-30 air1 ro
Toyode (1956) jet throat-3hole Bosch goasoline (300C) 0.75 0.53 21

type; aleso made kerosine (300C) 0.84 1.75 24
some measureaenta. 0.93 70. 32
eith other noesles heavy oil (30*C)
such as pintle, ethanol (30C) 0.78 1.00 21

throttle, ip.inge-
serit. snd sairl

Tsoaaaea so d Stationary 0.025-0.105 long cylindrical -eter, glycerin. alcohol, air room
Toy'd. (1955) jet (used 0.025. throat oils (used only water for

0.067 only drop sins)
for drop
sine)

Tote sod Swirl jet 0.034-0.10 Spraying Systems .ater, cater/glucoas 62.5 air 1 rose
Marshall (1953) Co. "notles solutions (dyed eith 6

2.5% nigrosine)

Tksoer...d Se1r| jet 0.07-0.20 Spraying Systems bets nshthol, bqnsoic 1.04-1.08 0.8-2.0 27-37 sir 1 roase
Moulton (1953) 6o. nozzles acid (131 to 182 C)

1/4 LN and 1/8 A

Welton sod Spinnigs 2.8 eater e. thyl salicyLate. 0.9-13.6 1.1500 31-465 air I 1r0se
Preteat (1949) dish dibutyl phthalate,. aer.

cury. glycerin, o-dichlor.
beazeoe, etbhylne dibro.
side. dekalin, tricresyl
phosphate

Weis. sod Stationary 0.12-0.48 15 cylindrical tubes Acrawax C (e.P. 284.2900?) 0.806-0.828 3-11 18-22 air 15 roase
Worhsam (1959) 'et into (air

41oing gas duct
dime.)

Vetsel sod Pneumatic 0.034-0.071 3.8-6.4 cylindrical liquid sex. eith dye (u.p. 190°F) 0.83 8.7 29.6 air 0.1l-1.4? ros
Marshall (1954) (renturi feed ajet directed I

throat) along axis of len- alloy (I.p. 2030F) 9.8 5 (? 470 (sir) (1.1.4)' (rose)
turi throat coo-
cureot with air;
2SSCincl. anl
converting sall
div erging

W i t t ( 1 9 0 ) P e a sa s t i c var i ou s a t o m ie rsrar o d d a t a o f o t h e r c a [ d a.t o f Ir e. a n d pe d - 2 .5- 3 3 2 3 ,-2 e c r
cliffa (1954) sod Wood (sar) (1 3) (oc
(1954)]. ater, iso-octane

Gas into Alich spray dichiarges; in case of pnweuatic atomization type and upstream pressure is given in parenthesis. I gal/br S

"" i~-,

X >**



Table 11 (Concluded)

F EXPERIMENTAL CONDITIONS USED BY INVESTIGATORS

GAS PROPERTIES* OPERATING CONDIlTIONiS DROP Of AMETR

e.Liqoid ..... -VI .I qeId Liqn".:P.... T..p.rs. Lis.U YI pI 1t :1.1. 1. Ms Typoad-SO~ ~~ a I~ Pr.... I pe Di .chr. Ve i. S.sotos Mtodo UM
v C c Rs/.* Al W .~ Sr 1t 8.1Mcr. oeoa

rp. WassC ______ _____ ____ ___________ ______________

3 (:ir room 6000- 0.08.2 0 32 10-90
(ir) (r--o) 33.000

ai r I om 100.2300 0 30 500-3000 alwddrolsj to NNj from 500 to 8,000

weighed entirolne.s
ad Counted aumber
of drops

air 1 (room 2500-7300 0.1-10 032 10-1000 measured light o.1.
(air) (1-1.031' (rom) sorption from knoown

Simeter o rp ______________

cir( 0.O018 p) 1 room 1600-6300 D0 100-500 microsecond flash N 8 . from 41,800 to
'cety~me pht oh6"6JA, 0,010 rp) I ro.(probahophpn66 1

5A 0.031 cp) 1 roe.om 0

air I roe. 5-1000 Neadhm used: D.=0.1 cm; 6-125 psi; Experiments covered setule
* N 0.5-4.2 flow Pat!* r. and capacitcy

Joyce used: D.*0. 09-0. 19 omly quote N m(19)
so oyce (1949) for dr~p

____________ mi__ sis dato

Ii roe. 0.5-.89 2-4500 D31 2S-250 opray collected io N, . varied from, 200-

weighed: sample Pho. 0A
- -- ______ _______tojrsp hed. coanted.

anIntegrated
air I roo 1.5-41 900-5000 0 33 70-320 counting of photo. Np vried from 100-

micrographis 20'9)0

air 1 room 150-6300 2900-22,000 0 32 30-S50 (ei) olected! drops Intermittent flow
und r liuquo. pho- (Osus) y 500 rpm)
torsp . dadoo

ed() slidified
tiess. sieved
(counted for sizes
under S01A)

air 1 room 750-4500 200-12,600 D032 70-620 couotingofpo. Al gedasop-
micmrog h diat sod dripping drop

sir 1 roes 4-22 60-9.10 033 203.200 collected drops in
Stoddard nol'eat.
phocographed.con-e

room 1.8-28. 27-127 D1.. 70-230 solidified drops
colIlected. nampled.
counted and sles-
anored microscapi-

air 1 room 0.04-2.8 30G. 12.15,500 13x 12-3000 drops collected on
100.000 asgoosiun-oxide

coated slides and
counted

air 1-5 room 6-190 120-3000 6000-30.000 0ý 19-118 solidified drops col.
!ected sod analysed
in Mticromerivrsph;
checked by micro-

__________________ _______ copic coust

air 0.8-1.4 room 1.1-4.7 b40-1000 6000-25.000 0.002-0.05 0.0 25-130 so lidified drops
lair)(r.- _F _colltccod. photo-

lar) (-14) ro.) 074 460 graphed, counted

nir I room 10-120 9000-34.000 0.15-20. o 10-200
(air) (1-3) 1(room) IIII 

I ! _

S1aol/hr 1.05O c fsac

rf



Table III

SAMAY OF DATA ON HAUJLIC (PFES.UMIE

A. Simple Jet

CONVERSION TO GENERALIZED FOIRAT: (D,,/DJ) h k

(Note: For any axial-jet nozzle stationary wit]

AUTHOR UNITS EXPANDED RELATIONSHIP FORatmosphere, u and are identical)

REQUIRED AVERAGE DIAMETER Type
Diameter Controlling

Ratio Variables

(Djr•/Dj) Assumed

Fraser and (D'ur) 2 31N 0. 0 5 5O.O .- ( ID
Eisenklam (1956) with ) j - '

2. 0055. 1 96 0.2S 0 053S0 74 0 25 fixed ]0.37 0.11002
. " .O , D1  2. D.•o, " 3 geometry 1 I

cgs D32  .3 q0.61 0.425 60 .7 0
S037 D3.5D 0.37 0 ~D ID

j , Pj p

670 
37 D 001 p0 .12

!./3i 1'/3 S.73D. except pj S.73(DJI/D )2/3

end Dombrowski D 3. wI2 j / ith'j

(1957) cgs D. 2 6 /3 Ap~l/ 81/"
3 0

2 
2/3 1/2 D2DJ wt

ff J U J P, fixed 1/ 3 N !' 2 P1

_________________geometry

Harnon (1955) ..3330D.3 0.07 0.78"cosise" D A s" D, 30 .'L")0' PI\
032 5O.3S 0.648 0.052 0.15 D3 21Di (D, u') 3330I.2.III!.1

uj• P. P • 011 1 AI PC/

Reasson d C 2//3 1/6 1/3 0D, u.'/)
Miaro'hi (1961 ) D32 D CWI•Ipj6••P Ds21Di.Dj)

D32 __,_Al_____________ 
withj j2

cgs lain ( /e/2)e1/3e2/31/6 32 fixed [i )]1/3

where CH. - 5.2 for molten wax; 7.5 for normal liquids

Kruae, Hess, and (Di.ur)
Ludvik (1949) with fixed

velocity 19.81A" 
12
c(, 0.80

ratio19. 8/ " O,06 (7 1. O 6 ul

cs D32  U0.800.26.06
j Or 2 03 (UrpJ)

with fixed
velocity 0 06 1.06velocitySD.8" a'" (Ur/U*)

ratio 1 i '

Kurebayasi (1961) 86.21y.25
cgs D32  u81615. 0 25 D32 /Dj (Ur, oj) 86.2(pj//As)O.6S/Die.1

Ur 1.1 3jO

"M ayer (1961 ) cD C / / 3 D .I i . y ) 2

or4/3 P!/3 2/con.iatent •.. /,/, p2/3  Xx..D •except P~Co,I/,)•/

where C, - 18-€0)11j3 21.3 for k, 1 0.3

Merrington and 500 .2 .DS'".) 500(oSI 1 )0 '8

Richardson (1947) cgs D.. ,Ss (Dr"Ur) 500(P-ilJ) 0 " I

r Pi . D. (ur .M~) SOO(P 1/ ~D) )0
Mugele (1960) 5.0DO.6S/ ,0.15 j0.20 a

consistent D32 " u"5 .3 $2D any 5.0

U0 55S p 0.35 D 2 D

S.4. .

S"�...• .t.

" p ' . .. q r .,,: " .d



Table III

HNJLIC (P!ESSU1) A10IZATION

A. Simple Jet

FORMAT: (D5.,/Dj) *h/V4A.j,N8.,~ k/Nja.j*,N"W#, COMPARISON OF PARTICLE SIZE PREDICTION~S

AT STANDARD REFERENCE CONIDITION4S
*sale stationery with respect to the ambient (SEE TABLE VI)
aare identical)

Additional Average Diameter Calculated fit EMARKS

Specifications Standard Reference Conditions,
k • for D,., Micron&

Reference
__Conditions u, 1, 0,000cD/sc Ur 10,000 cu/sec

2, 31 0.055,0' .1.0..6 0.04

of ~ ~ ~ ~ ~ ~ ~ ~~e 0.7P . U .202 .4 O 90* - TO radians
•~~~~ , Iie j Ij/j

-,, N,.j 1 355 112 Fan spray nozzle

2.31N *. ID) "D 1, ID) . 1

0o.37 0.01 0.2 0.25 0.25

S.73(Dj./Dj)213_ eO 90 -17/2 radians

~1/3 /3 Nj - 492 106 Fan spray nozzle191I/3 NI/2 1 /4
_ ,i _i (%D1 /Dj) - I

3330 (2.1 0.7 -0.15 147 41.6 Stationary jet

(PjJ)I/(DjDJ)23 1/3 1/3O272 (wax) 58.6 (wax)(82]/31/3 1/3 $/ 90°
(sin (oe 1  ' 3  

(0.e/lD ) . 1 390 84.0 Fan spray (e, . Ilse)

(normal liquids) (normal liquids)

19.8Aý•~(,=•°•/•°.12 soo 0.06
0100 000000

Fan spray, stationary
and moving jets; in-

-(Url'i) - I 131 11.4 secticide spreading
(Chi-Spraying Systems,
"Veejet" nozzle).

0.06 1.06 0.8019.8Dj 0-j (Ur/nj)1.6 00

O0.9 0.25 970 . 68.8 Moving (roiating) jets.

V3 Theoretical for gas
CIV0(/P.) 1 1/3 flow over a liquid459 21.3 surface; kv . 0.3

from exparimental
spot checks.

800(Pj/Aj) 1 990M199 oMving and stationary

500(P1 /o1D1)
0
.4 0.6 0.4jes

0 0Moving and stationary

5.0 .35 .20f 31 89jets.

SI



Table III

SMARY OF DATA ON HIYIWJLIC (PFISl) A

A. Simple Jet

CONVERSION TO GLNERALIZED FORMAT: (DID 1 )

(Note: Forany axial-jet nozzle stationary witi

UNITS EXPANDEW RELATIONSHIP FOR atmosphere, uJ and u, are identical)
AUTHOR REQUIRED AVERAGE DIAMETER Type

Diameter Controlling
Ratio Variables k

(D,,/Dj Assumed

Panasenkov (1951) 6 D1
8
. 0. 1S DiD ay 6

consistent D3 0  u o. D30IDj any

Popov (1956) 10.00324D J .5 rj (Dj0 3 1.15 D. aur) ; s
ooitt XX 0.upO40/ (22•'e D. D 1)¢,a 1 );o O.OO324(p.J/i )O'°s(PJ/

consiste0 1.22 0.08 orC
Ps A ' (u,,a )

The author does not define his mean diameter. It can be inferred that he used either a number me.
He presented all his data in the form of graphs. While the above expanded relationship fits hiss
report it. His data are probably for a simple hydraulic converging nozzle although he gives no de
plots of particle size distribution some of which could not be reconciled with his other atomizati
showing the relative effect of gas viscosity and gas density are reasonably direct but the data f
D1 , pj, j., and oa are taken are subject to the irreconcilable particle size data.

Putnam et at. (1957) " D0.5 0.2 " - D0. 5 
6.2, /) . Mi I= .j ' j M1  •

(Pilcher and Miesse) D.. A 0 2 T 0.4 0.8 0.6 I

0.25 0.23
Tanasawa and C7,.g° 'j k2CD.'uj ,4 30.25

Toyoda (1955)(1956) D)3 2 = u- 0.25 (D,,U) CTT(8LIUj/PerJ) * j

consistent where CTT - dirensionless constant 030.2S
47 ior steady flow, D3 2/D. (D..o') CTT(9LUJ/Pu d k,
70.5 for intermittent flow

k " 1  1+F 3.31 ( (u,. 3 3 2 0.2

2 [1~~/ L 3.3N,," CTT(8LPJjIPIAP.j)
Tanasawa and 4.74D 5 k0 ..245 

7 5
o0

2 5 k

Kobayasi (1955) D3 2  * Ap 1/4 -N
0. 25 

O.S pO0.25

consistent , D31. (i any ) 5.64k//N0.25
wheke ~ l.56- [1.l556N~5,] D3 2/D, •except • z'where A' /2 ý, S-

k~j " I +1lEo56 [1 +15.56N1:5]

Weiss and (Dj,ur) or u 1/12kP
Worsham (1959) (Pj1,.) 5

97(ujl'"/0,) k

597D.1/6u.1/12 1/3 1/12 5/12k (p/,j); or1/12 12

D& u. a' w' g P 0iith A' 1/1 1/12
Ur 4/3 5/6 costn 5 97 - kP

c here D55/D, \ 597 (A_ _____)
consistent k E l 11 (1/NP)] or [1 + (pj /lOOOpz) for 1/12 1

range of conditions covered by the authors (/LpOcj) 597 u]

A Ali



Table III

IC (PRESSJ) A1•MIZATION (Continued)

A. Simple Jet

FORMAT: (D.5 /D•) ri.'i.j, d.jr, r j COMPARISON OF PARTICLE SIZE PREDICTIONS
AT STANDARD REFERENCE CONDITIONSaisle stationary with respect to the ambient (SEE TABLE VI)u, are identical) REMARKS

Additional Average Diameter Calculated at
Specifications Standard Reference Conditions,

k a 8 for D,., Microns
Reference
Conditions ur 1,000 carsec ur 10,000ce/sec

6 0.15 0 1510 1068 Stationary jet.

1/ .00324(fij/i•,) 0 0
'(Pj/p )0.40 -0.15 1.15 4220 422

I

d either a number mean (D10 ) or a number median (D.,).
ea lationship fits his data closely, the author did not

though he gives no details on geometry. He also givesde h his other atomization performance data. His data
ati irect but the data from which the exponents on

f data.

%, functional rela-
tionship, not defined.

C, (,..!/Ps 0- 25,j, 0 1.00
""J 4710 471

Note: k,;, differs from (for C7r - 47) (for CT .47)
unity only for very Stationary jet; very3 0.25 high liquid viscos-

CT7(g9u,/Pur) kpj 0 0.25 ities; at reference long cylindrical
conditions discharge opening.
kaj - 1.010 710

0.2 CTT(gp3D3/P 5 2l 0-2 k 0.75 0.25 (for Crr - 70.5) (for Cfl. 70.5)

N-i . Based on extrapol.tion
The value for . -does of relationship given
not deviate from unity by Tanssawa and Kobayasi

5.64k IN 0: 2 5  
0.25 0.25 except at extremely 1000 316 in Table Ill-C, for a" high values of viscos- swirl jet, to the case

ity. These values of a simple jet
coutd nat be reLoneiled- (i.e. for (A/lA) (D./D) OD]
with the authors' data.

97 r)1/12k1/7(ujzz/oj~l/2kpzNp - 1 srm

N86 5St4

2 )1/12 . 1/12 uj - 98 Stationary jet into7 5/6 5/12 flowing air stream; the

\ii7 (A ur ) kPquantity (ul t /o(.)l/12
varies from 0.5 to 0.7

1/12 u 1/12kur for the range of
L conditions covered by

( Fig7 k 3/4 5/12 the authors.
P • • N , - I st

. ~1/12 1/12 ,ui = u r/1O00613 .

9 7 - 11/12 5/12

1 j 9i

0



Table III

SMAARY OF DATA ON FflUWJLIC (OR PW&SSIBE)

B. Impinging Jet

CONVERSION TO GENERALIZED FORMLAT: (D,,/D
(Note: Since these are all stationary axial

AUTHOR UNITS EXPANDED RELATIONSHIP
REQUIRED FOR AVER.AGE~ DIAMETER Type Diameter C~ontrol Iing

Ratio Variables k

(D1,/DJ) Assumed

Dombrowaki and Hooper (1962) D32  ) -)D i uCj

0.02gc3<p <0.01 g/cm
3  Olo.r

N.0
16

u0.32 0.06P 0.1

D3  0.07:26 j

0.01 g/cm 3 < p :S 0.016 g/cm 3  cgs 1)2DD(( .

F. 08 12aO.16 i 0.2'5 1

I 0!16J .3 0.16

D3 0.435 fq1-Ilg- .2

0.01g g/cm3 < p <S 0.025 Nlee3  cra o D32/Dj (urO'j) ( O.72 0

0.499 0O250912 I 2D 7 Pi

i Pi

4(ui, value 4p
0
)-
5

Dombrowaki and Hooper (1964) cgs D3 osn(,21-6u.1D2Di 0f A
(si (e/2)''

6 ~.7  D3 /D. assumed) [sin (0./2)]1.16

IKuznetsov and Tslaf 1l957) -j Fri DJRJJN(002V.36 f
- consistent D.,I3 (Di U,)S13 -

Authors' Equation

Equivalent Approximation consistent Dx L ] - D.D ( 'd1.

S 0.083 0 35 0.517 1  (D r 13.
9L u; pi.57LL

5.0 D,0-6 6~0. 15 0.20
Mugele (1960) consistent D32  Pý 5S~o. 3 D32 D any 5

Tanssawa, Sasaki and Nagai 1.73 D0 -7 5i L0 0 . 2 5

(1957.) consistentl D32  0 S 025 . any 1.73

A.~ D 2 D

M"fr'

-1 N



Table III

IC (ORi PRESS~II) AltNIZATIaN (Continued)

a. Impinging Jet

IZED FIOMAT: (D.,/DJ) h/' N /'COMPARISON OF PARTICLE SIZE PREDICTION

all stationary axial-jet notlsie u, and u, are identical) AT STANDARD REFERENCE CONDITIONS (see Table VI)

Additional Average Diameter Calculated REMARKS
Spciictin at. Standard Reference

h Spcifcatons Conditions. D.,., Microns
For Reference __________________

Conditions u,* 1.000 crn/sec U, -10,000 cm/sec

0511\/P,\0.1Two 0.053-cm diameter
Il0.6 .1 1 234 112 holea impinging at an

IlNý. 16 D'1 '0 angle of 110*

'0V.60.81 0.16 0.16 N,~ 1 186' 89*

0.499p
0* 2 S 

8 91

N.2j.201ýi.60.28 0.12 N,,j . 1 Calculated diameter at
Pi conditiona out of the range

of gas phase denisity, p91
speci.)-;d for equmtion.

For turbulent jets;
04*~ 90* 255 41.3 laminar jets are also

lue 0.studied bu tmthe results
(am~.5 :6/)l

6
Ql~.3o. asmd re more compl ex, Ihow-

d (snO.V16D4AP3902(a md) ever order of magnitude
9, 180' 171 27.6 of droplet size is the

____________________________________ ______________________sane for laminar jets.

~'0.082-Y
pja3 Liquid jet impinging

1,61 -(0.246 *3-y) on a deflector plate.

283 100 Studied water with
~ various velocities and

liquid discharge open-
.006 eiJNI,~N ,)- 0.0306 In [19P;Dj

3 /p1A2: ing diameters.

r3 ,0.083
13.3 [p 0.60 -0.25 246 110

5 0.35 0.20 315 88.8

1.730.25 0.25308 7.5Head-on impingement;
1.730.25 0.2 308(9~ 180*

s .. '



SU\AII OF" DATA ON ( IYDrAULIC (OMR PRE.SS

C. Swirl .hi -

CONVERSION TO GENERALIZED FORMAT:

FOR STATIONARY SWIRL NOZZLES:

AUTHOR UNITS EXPANDED RELATIONSHIP FOR and Ap Nv 1 (PjU•/2)
REQUIRED AVERAGE DIAMETER Type

Diameter Controlling
Ratio Variables
DzzlDji Assumed

Joyce (1949, 1453) K.D, P -. 5
0.

2  
K;OD0. 0.2D

D32  - 4 0 A -- j 3/D~ As.sjumed 0

Op. 44 ;O4 0.04C 6 <),. 0,.

Knighlt (195S) ls. wo 
20 9  0 

2 15  ,410 0 209(0.240

(In diacustion of D32 .458^0.215 0.458,0.006 (D0 j ) N 353
Radcliffe's paper) cga P j N°'5Yrcgs 19. 6Dq -• 418 0..215 D /ý

N0.0os
0 o. 353 .O .707 ^0. 464 (p 1' " N0 3 5

3

S"Vt r Nj,

I1'yeshenko and 0.00212k, Gqe. '8UDj" 77
T  

(D n,i) 0.00212kg] C9Talanto, (1964) Da. * y o"1 t

k 0.1
:onaietent where DV/ %0212k ,C

k 1 . 66. opj"
44

/p0.4
4

0."77 q

k P .N
1
/'
13  

(jur) O. 00212klj C1

Longwell (1943) 23. S hj( u 1 j) " .705,./.ipj) 30
[As quoted by /.V ' , D=I/D. (Dj,ur)
Marshal (19s4) and egs ,,p- 37 S(sin 09./2)) u, ,12)I No. 3737
Mclrwin" -'e r'

There is some question as to the units used by both Marshall and Mclziine in report
The value 30.5 was obtained on the assumption that both reported D., and D, in the
used the units indicated by McIrvine the results would be unreasonable.

Mclrvine (19S7) K 0)1.28 
0

.
19 0.. 24  

K, 1,D
1

.
28 

0. 19 
0.

24  
(K,)

D. l- j $L, ,i j J, 3j ( No33_kp0 ; ,
33  

33 0.66p03 3 N 0 N'33,

Note: In arriving at above exponents on b. D. 'D (ujj)D
author ignored additional diameter ' (u a
effects inherent in such terms as flow
rate used by other authors in their ,
correlations. Making such allowances (u 1 ,pj) I
the exponent on Dj would be closer to 0.66 .\

Mugele (1960) 5000.65 0.15 0.20

consistent (Nj/Nu,) 0 ' 63u0
r .35 D32/DJ any

The author is not clear on the definition of terms and the exponent
on the ratio (Nj/N,,) may not reflect the author's intent.

Nelson and Stevens (1961) Da " Dj exp (-0.0352Z' 0.124Z - 0.429)

Author's Equation consistent]Orgpn 0.0OZ45N0"51[tan (0 /2)]029
Organic Liquids e where Z In e j .Na an 2)

Sconsisten D D exp (-0.0624Z2 0 0.702Z - 2.900)
where Z 'i {, 4 8

lNe;f 5([tan (0 /2)11.2)

Equivalent Approximate 13.0.4 Pe 13w f
Equation , consistent D g ui f D. w3,

Organic Liquids " [tan (6 /210.64 " 8 2
pO.53

23. n0.~ -47,&0. 042--0. I I ay2
Water consistent D.v 2 j D.,/ with fixed

(tan ( Ia/2)) l
64
Ul
0

l
64 

03geo1etry It

.1oil:
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AULIC (OR PRESSURE) A1TOMIZATION (Continued)

C. Swirl .Jet.

Ef.ALIZED FOWiAT: (Dxx/D) k/Na ~ k/Ne 9(/R jr/Caj, /Rr Wjr COMPARISON OF PARTICLE SIZE PREDICTIONS

SWIRL NOZZLES: Ap Nv,(P/ur2/2) or u - (2Ap/Nrp.)ý AT STANDARD REFERENCE CONDITIONS"r S(SEE NOABLES V)

I j(pju2/2) or u (2tAp/Nljp.)' "Ur_(N,_/N,_)•__E T__ REMARKS

Additional Average Diameter Calculated at

Specifications Standard Reference Conditions,
I for D,,. Microns

Reference ur - I,000 ua " 10,000

Conditions cm/sec cm/see
nKo Kjo not defined.
Power on a viscosity interpreted

4 0.5 0.3 by Radcliffe (1954).

.
0

.
4p0.o'0

3  See Putnm 1957) for comparison
_______ __o____with ami l pi. ets (Table 111-A).19. 6p0. 1 !8

3S3 0 105 0.242 0.125 0.582 0.125 N - 1 73.5 14.5 Based on the data of

N,3N0.]O 0. X. Lubbock and Bowen (1948)"r __1 _ _I and others on Lucas

19. 6u 000is 
burners.

0.
3 S

3  0. 105 r..249 0.464 0.249 N, j , 10 57.7 11.3

0.00212k C 0
0 1

7 
0. 8 1 7

- 0.0.047 7"rj - • j -ij

0.00212k .C 17 L0.17 ,, u 0.047 1483 226

S ' j r 0 0. 77

0.002 C 
0 .

8 17 0 "
04 7 0.

0 47 0.
72 3  04

0.012k•/ 9Ce 1 j P* Il A /Pit 0. 047 077

30.Se (O.7OSj/pj) 0.75

NOr 7 [sin (,9 /2) ]p " 37 5'O"750. 51 28. no le

0 si0.5 102 18.1 Tangential-entry

vine in reporting Longwell's results.

and in the same units. If they
C.

S1.41
-0.28 0.94

No 3 3pP.i .. 0.70 Based on an average of
. 7 0.09 0.0. values reported in

Ný 1 Dj 0.42 0.24 the literature. No

value is given for

Ki 1 D .71 pj01O 
K0I (or

NO, 330.43 
0.24

5.0

(Nvj/Nvr)1
0

*
6 3  0.35 0.20 Nj 1 115 32.4

(u,/uj.) 1 187 25.5

(ur/ja) 1 214 45.2
0._2 Grooved-core nozzle

13.0(u,/uj)0.82 with interchangeable0.53 0.29 (Ur/uj.) . 1 192 29.1 orifice inserts.

• , [(tan (9 /2) ]o6

23.0(u,./u. )0.64
[tan"(0./2)0"54 0.53 0.11 (ar/ujo) - 1 225 51.7[tan (e./2)] 0, •

, • -,•.•e• ,, ::,; w,.



Table III

SUNIIARY OF DATA ON HYDRAULIC (OR PMRESSURE)

C. Swirl Jet

CONVERSION TO GENERALIZED FORMAT:

FOR STATfONARY SWIRL NOZZLES:
and Ap = N,.j(p•u 2 /2) or

UNITS EXPANDED RELATIONSIIIP FOR
AUTHOR REQUIRED AVERAGE DIAMETER Type

Diameter Controlliig
Ratio Variabirs
Oz,/Dj As s,., u '

Radcliffe (195,)(1955) 2. 63 0 "2 5  3.27D0.' 5

_______________ 
D32/Di (Du)

cgs D12________ A- 0 125 0.275 0.55 0.15 r~,
cgs D32  O,.4 Ni Nvr Ur 

.125

Lucas Atomizers

Power Jets (ventr4) cgs D3 2  1O.I=O30.7 0.2 D32Dj (Dj'ur)

0.318 30

Po e e s23. uw . 30.7D,'' 
3

Power Jets D32/Dj (D_ No-

(vent closed) cgs D32  AP30530 .1 71 0.742 r 0 .12 D"vj vr r t

Tanasaws and Kobayasi 1/4 9/4 3/4o1/4

(1955) 4. 74k,, k kjD; o.j 5.64ký, k' &aj D, O .n
D3 2  no no D ) r any 5.6

321/4 1/2 1/4ApNi,r rP.3

.- All correlatio

which were cal
tial flow the

consi tentN 
vj , (D,, /Dj).•

etry as measuiconsistentThe potent ial

where: k5g [1 +0.37v'L 'nj7 ] [1+19.7 exp-[(4.13)(Ai/A.)(Dj/Dc)] 
(AT /Ap )(De /DI

k,, (1 - (DID )] 0.0

k [1j [ 5.56(N0.jj/k ,)3/2J = [14 15.56(2/k A Dypyo0j)/ 0.
"~. f, aI)G) 0.2

0.3
0.5
0.7
1.0
2.0
i0

Tate and Marshall (1953)
cgs D3 2  0.01126(Di +0.4 3 )e [(396/aj)-(ujii/3240)) (Dilui

Turner and Moulton (1953) 0 1.89 0.220 0.594 0.515 0.220 0.594

0 .42 0 54 0 5 0 22 0 with fixed 0.504,
cgs D i . o•. 0 DzA 1 /Dj velocity

Tangential-Entry i
13
0

537  0.537 -0537 ratio

Nozzle j Pý (U/uy)(D 'Ur)

1 520 0159 0.713 0.632 0.159 0.713 it rxd0

GrovdCoe .14O~'0.17 27 with fixed 0.12?
GroovedzCore 0 14W j 0i u j D j DI../Dj velocity

NDv tO.444 U 0.444 0.444 ratio
SI I(u,/au)

A-* _,__, .__.___k__".



Table III

JIK (OR PRESSURE) A'1UMIZATION (Concluded)

C. Swirl Jet

0GENERALIZED FORMAT: (Dx a/D,) "k/Na~e N'8 r - h/Na." A''it ajr eir Vreir COMPARISON OF PARTICLE SIZE PREDICTIONS
(INARY SWIRL NOZZLES: Ap -N,,(pOu 2/2) or u, (2Ap/N~,P.)ý AT STANDARD REFERENCE CONDITIONSV r

t  
IN (SEE TABLE VI)

N .(.u/) rU REM~ARKS

Additional Average Diameter Ca~lculated at
.r rolling Specifrications Standard Reference Conditions,

jables k I'for P,, Microns
smdReference u, r -,0 r 10, 000

Conditions cm/sec cm/sec

0. 35 N, - 1 92.3 26.0
3.2~ ~0.5 0.5

jlud ~~N0-125N0.27 5  0.45 0.O 0506.21.
Vj V, A j N,,,= 06.21.

2.0.N,146 29.1

___________ _________ ___0.4__0.3_ Correlation based on

u,.)N
0

-'
5 N 0

.
3 5,~~ c'' .4 03 Needham's data.

i v i ýj ý1 103 20.6

30.7 0 ..152 0. 014 Ný = 1 124 2.
j U, - P Aj0.364 0.378

No-1 59 N0 .37 1 O'P378  N *1 601,
3~V V t Jr iNl.1 601.

arty 5.64ka. k9/k NV0.5 .2

.6 _____________________The term k is appre-

All correlations were based on the following values cal i~~etfo

which were calculated by the authors assuming poten- nt.tvr .g
tiel flow theory. The following tabulation gives (L ID.) = 0 liquid viscosities. At

SNVjl (D.,/D ,,), and 0. as a function of nozzle geom- h codtionsr refeens
al etry as Measured by the grouping (A,/A,)(Dj/D,)2. (A/A.)n. .

le The potential flow assumption would also imply N,, = 1. (A1 )=1315 100 essentially unity. The

ac tual values of & ,, do
I.(A,/A.i)(D./D,) NVJi (D.,j 0. ,degrees ( I,=0.3not de v ite f rom unity

'I, , , 5,/D) ________ (D~/,) 0.3except at extremely
0.0 OD 1000 180 high values of viscosity

c0.1 129.0 0.866 121 and cannot be reconciled
0.2 39.0 0.799 106 with the authors' data.
0.3 19.9 0.744 95.8
0.5 9.36 0.659 82.3
0.7 5.29 0.592 72.4
1.0 3.75 0.516 61.7
2.0 1.94 0.358 42.0

001.00 0.000 0.0

(ui it/u) j 65 2.8 Grooved-core nozzle.

hfixed 0.4P.4(IN 026 NV,, 1 211 61.2

locity V Vt 0.485 0.052 Tneta-nr
0.ti2 0.1 nozzle.

2tio i 13 Nv - 10 390 114041 ,/Uj)

* u,.)N
h fixed 0.l27ca 

637(N j/Ný,,)0.222 i 1 77 1 6. 1loczty 0.368 0.076 dcrnoze
12 u)0.076 0.133 Groedcr nozleati A, Nv N 10 295 0

4.V.

7, .-.

J %



Table* 1V

stwA1y oF ATA ON PNUawric (Ti

CONVERSION TO Gl1NKRA.*,

AUTHOR UNITS EXPANDED RELATIONSHIP FORl AVER1AGE DIAMETER DiType Cotlin
REQUIRED D@meter Controllig

Ratio eibn

(o_,/Djl Assumed

Gretninger and Marshall 0.6

(1961) r/./ 1 1.4 0.260 qq With fixed geometry
egg D0 Di..2lI...... I fined volumetric lo

0.260 j ing 1q19q ), and ft
convergent type L9aksw D1 9~p

0.0122 po..j~~ q).6 (D..

impingemen typ cg . 002 D../D, With fixed geometry
impigemnt tpe ga D~ 0012 (a5001,~~I D i~~spo.l fined volumetrie lo

i* I Cilg, and fixed (in
1
!

0.4 
3 2 3

,0.4
1 1

kq

Kim (1959) Dan 084 -j. j

DO.;7
3
SDO5 I

44
p8.7p,016 (D I*,

C. With fined geometr

whe re

k . I - 2.25 (0 O.733,0.604p" S72140.017/pO.00
9
,0..58] [wi 

5

gm no - for P e/Y 0.3 0.3

1. 0.5 for Wa/Wa < 0.3 (n

Note: Kim reported his correlations in two formats: one gives drop diameter in terms. 
or

of dimensionless groups; the other in terani of caonro units. There.is* discrep. (Ur'u

ancyhbetween the two, the former giving drop nines which are 1.45 times larger
than the latter. The former is the basis for the results reported here.

lugele (19601 1140 D0." pA 0
3 7

aG.4
5

consistent D L
3 2 I I I , 'D may

5.85 ffos1
Nukiyams and Tamnaswa D3
(1939) 32

5 C,,i,

cgs whereD21

kq-1 + 323 (in pp*
2 7 5

pa
0 4
5/,......qj/qS,
...250.7lS,)q,,,m.S u.c 1

Plit (1962) [18 j~k j 0.u

for us < usJ 3 2  
I00 P0.10 0 .52 D32/Dj with fixa..u ratio

Lwh e r e N o t e : I bi s a rt ic le 
1 
c o n t s

k . (9,qgO4 reports that the a

consistent ).4calculating partic

k., * Ant(D~/D 1)0.8(D1 j 1g 0.42(l 0.573 i9d1[i 0.05 (iL-/DS)) versely vs either
power, varying I

k" (Dg~0j )0,6 for 2-tube nozzle such phenomenon i.
for critical velo

A * E(0. 0,11/0 0(D /.1Dj0.1 for 3-tube nonnla. the anv-.hor presnet

Netzel and Marshall (1954)kt I iTe4rocvre

(as quted by Marshall, 19541 cgs Do 94200 DD/D. (,. mu,
I ax

alloy (low melting) cgs D., 444/.1-
11  o,,Io. u,.; val ue o na

Wigg (196031 19.0 L 
0 1  

'pa ~t 5
,,.

2
k A, 18.5 L0.1DP.2 O.lpAO.Sc.0O

2
A A siLL. fixed geomet

consistent D..0. j10

(except for AkL U -P. P 0402 with fixed gnome

which requ Ire D,,I'D4 aid (us/u,.)-raci,

Cgs Units) where U,

k, * 1 + 2.6a or (0-o

(Alassume 0 1

X k~ I "~

"04
1q

r/



Table IV

[*A ON PNEUMATIC (TWO FI•UID) AIMIZATION

E T/N- N COMPARISON OF PARTICLE SIZE PREDIC.
•TNRL OA h , R. ry TIONATSTANDARD REFERENCE CONDITION(See Table VU)

Average Diameter
Co t ol i gAdditional Calculated atStandard REMARKS

Cantroiling k Specifications Reference Conditions,
riablesee for Referetice D.,, Microns

Assumed Conditi•,;s U,ý. "1,00u *r 10.000
- - sc . cm/sec.

md (Dy,/Dy) I
With fixed geometry. 0.260 (p./p )0'S(paj/1A)(qj/q )0.4
fixed volumetric load- 1.4 -1.0 (Pi/a) -1 164 65a3 Essentially an external-

Smix nozzle; airdischarge
ing (qj/q,), and fixed (Dj.DJ)

0
.'

4
(j/l,)O'4(u4/U " (ue/u,) " I velocities are sonic; Ag

(/u 4,, - - - - was not varied.

(D,. nr) 0.0122 (2 q(D.ID)) - 1 Correlatinn is for

With fixed geometry, .12 (P-1P.)0'(Pa 1) 1.g 43.3 30.6 g 0.1
fixed volumetric load- /olO.IS(MIM)0.lS( I/j w.
ing, and fixed (u g/u,)( ) .

( 1j'ud 0.842 
2  

I 1.733 -0.589 1314 94.3

With fired geometry 0842(P/P )°.'2(pjij/AL),q(Dj/D )0 (1j/.-) 0
Essentially external-mix

nozzle; also gives simi-
Slar correlation for
double air nozzle type
atomizer

(Uar ,0'. (D0/D.) .I'

or 0.842 (p,/p')°.S
1

2kq(l/tJDN)(Dj/Dsd)0"733 0.733 0.411 j 1363 107.8

Correlation for lox

any 1140 0.82 0.45 (qj/qc) < 0.0001 1686 90.5 liquid loading

(qj/qS < 0.0001)

•j 91.0 0

S(w,/ye) - 0 585 58.5 Internal mix nozzles

(Wy/ae) - 1 612 85.2

(uraj) 5.85 kq/Dy~S . 0.5 0.5

D a0"620l'30 /Wg) "I Combination mix nozzles:
( 1.83 k.8 kghq-2cj* ) (a) 2-tube nozale conxists

with fixed ratio I 0.72 0.28 kng 1 1 50.4 5.0 of two concentric tubes,
au,)2 ha0.vg2 .40

UL P/- U, center tube having a serrated
tip. Liquid admitted to the

te: .1iis article contains numerous typographical errors and inconsistencies, many of which could not be resolved. This author inner edge of center tube;
reports that the arithmetic mean diameter was measured. Actually his method measures a Sauter diameter. His equation for air flows through both tubes;
calculating particle size also sews to be in error by a factor of (3/2)2, the actual size being larger than shown by his (b) 3-tube nozzle consists
equation. It was not possible io reconcile his plotr with his equations. His equations show drop dimeter varying in- of three concentric tubes
versely as either the square root or first power of gas velocity; his plots show this variation to be closer to the second converging at the discharge
p-wer, varying from 1 to 3. lie reports a critical velocity at which drop size variation with gas velocity changes. No end. Liquid enters the an-
such phenomenon is apparent from his graphs, nor can his equations for this critical velocity be reconciled with the curves nulus between the center
for criticel velocity presented in his graphs. 7he equations given here are direct algebraic conversions from the equations and the second tube; air
the author presented ignoring the above problems. Only the equations for velocities less than the critical are presented. enters the center and the
The author covered a gas velocity range of 25 to 75 m/sec with drops in the size range of 30 to 500 microns diameter. outside tube.S (O},ur) 94200 p0" 65" 0"38/cr1"03 0 6

- 9 1 .6 1.03 3850 80.4 Venturi atomizer of

a,; value of exponent 444 p 7 3 2 9 41a0.70 0.41 2060 159 pilotp

a was assumed . j I I (assumed) 0
(Djwuf ) 18.5(L/Dj.)O'(Djf,/D)O' 2

(plq)O 3(ujrj/j)O' •,,,, 0.7 0.3 (LU/Dj) - 1 External-mix nozzi,.

with fixed geometry kr applicable only for liquid
(j

5
,r) (Dj./DI) - r capable of coallescing or

with fixed geometry 18.S(Lg/1D)0'.l(D,. D.)'
2
(u/ur)O'(p./p )O'3k k 0.7 0.2 , drop collision; apparently

and (uj/u,)-ratio i t lassumes that u, is equal to
1 (u/u ) 0.1 294 37.-' the velocity of sound for

high pressure nozzles.
(D18.rj) :pj/p )

0 1
(p /p )0.

3
k 6 0.8 0.2 k - I Data based on external mix

or (•jLflr, atomizer with central
orl suk -l I 1 liquid feed tube surrounded

(All assume Di.* Di) _Jby swirlizg co.presaed gmtz

ýA."

'~~4 .-



Table V

SMMARY OF DATA ON 'cMARY OR SSPI

CONVERSION TO GENERALIZED FORMAT: (Dx,/Dd) 1

AUTHOR UNITS EXPANDED RELATIONSHIP iOR AVERAGE DIAMETER Type Controlling
REQUIRED Diamter Variables k

DaXoDd) Assumed

Fraser, Dombrowski ",75kn&kq ",0.5j 0.21a".5
and Routley (1963) k32  = [6 xl0-] u . k

1 k 8 i~ P j P 9 j2 7 k ,9kq Fi [ Jwhere L2 rkgj~o~ f
kg L lr/Dd)0 " 25[1 . (Lr/Dd))

0 . 25  (Dd,ud)

cgs D 32 /Dd or

k q 1 + 0.065(vjg)1'5 (u ) Note: This format is

additive term 6 x10-4
)2]0.5 0 3 2. This term corresl

k [1 - (us/ud) 0-S(uS/ud particle size of 6 mic
such a lower limit ib q
of the author's data th

L, 0.2 inch with the actual drop si

Friedman, Gluckert 0.913 k
and Marshall where
(1952) -

(Dd'ud); ,, (F j
0.913Frq 2D0.4L"1. "2c "1  (D____)_____

consistent D 3 2  D 2 D2D (Dd, rj ' / ked n(
u0.605 32d u ) (F/,u) -Reynolds nitd (P "a liquid velt

or
(ud.,pj) - LfuRpj/P,

Authors report that a
with k three times as
their data for the ma
those of Walton and P

Mugele (1960) 1.73D' 5p'0.0 5 .•r 04
consistent Dpmax d 95 .5 Dpmmx/Dd any 1.73

Peskin and Lawler-D'uJ D/D a 2.2
(1962) consistent D 2.2 xD.ny

Putnam and Miesse
(1957) 3.32DO"437,0.082a.481
[Based on data of consistent Dx d DxX/Dd any 3.33
Walton and Prewett 111.3044 0.463
(1949)] d J

Walton and Prewett
('1949) .1. 9D Pj

Dxx - any i.9
udPj

4'.

rAp
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Table V

ON ROTARY Of SWINNING DISK AIUMIZATION

DFORMAT: (D,,141) k Cj* k/N AN' COMPARISON OF PARTICLE SIZE PREDICTION

ORejd , Reid Wjd AT STANDARD REFERENCE CONDITIONS (see Table VI)

Average Diameter
Calculated at Standard

itional Refertnce Conditions, REMARKS
Specifications Dxx, Microns
for Reference

Conditions Ud = 1,000 ud v 10,000
cm/sec cm/sec

(= 1,910 rpm) (wd 19,100 rpm),

(L ,Dd) 0.1
0. S 0. 1 0.5 (w ,) 0 197 12.0

£ L IJLP. (ug ) 0 Combination atomizer in which
(F/U.) - 1000 an air stream impinges at

right angles on a sheet of
d h (Lr/Dd) 0.1 liquid leaving a 4-inch di-

This format derived by ignoring the ameter spinning disk
:, i 1(V/V) 0tive term 6x10- in the equation defining ( 35.This term corrmsponds to a lower limit on 36.5 7.0

icle size of 6 microns. Th, reality of (ug Ud) 10
a lower limit is questionable and for most (FJ/i.) 1000

he author's data this term is small compared
the actual drop size.

0.*913 kgkqd i
where g-l// 0) . 1000" 513 129

• (L,/Dd)O1 0.5 0.1 (L,',/Dd) =7f
kqd = 0 /.t) . 2 1 1

j.) - Reynolds number based on radial s
liquid velocity and film thickness Corresponds to a capacity

of 314 g/sec (.5.0 gpm
" LfuRP./l.i for water) for a 10-cm

- diameter disk and a liquid
thors report that an identical expressirn of viscosity 1 cp.
th k three times as large fitted both orrvsposito impl
eir data for the maximum drop size and tCorresponds to a simple
ose of Walton and Prewett. (non-vaned) disk.

1.73 0.5 0.45 (F1 /pj) = 0 488 54.8 Low liquid feed rates

2.2 1/2 1/2 (F/A.) = 0 696 69.6 Theoretical; low liquid rates

3.33 0.563 0.481 (Fj/,.A) = 0 420 38.0 Lo* liquid rates

Low liquid rates; at very low
rates, main drops leave the
water as single drops and are1.9 1/2 1/2 (rF/puj) 0 601 60.1 quite uniform. At higher
liquid rates, the number of
smaller (satellite) drops

_increases

.

of'I



STANtDARD EFFHE( F I ')N)I1I(ItN f()H (OHR.I.ATION (COPARh.)N1i.

FUM PH ) I~T RF T I V N0771I,t ('41 "TA•I PROIFTHTIF,

0.001LI 1 1) 0C1 t01 .001 IL cml gO l cm! I)t h! j'.) c' ILt

I it'cm I0 g cm 1) I 'm I(oo cm

11.0i 1 (tI 10- poise .; . cr, I() I cr.

U I rp L pots I

a, It0 dvne% cm - 102 d&cs tm - 2 radian

,¥1 I stm rwhere needed

FlCO U)%IlITII AS

Velocity or cm ), It) 1I.

ft sec '-. L.

CAorresporidinp v'ls ic rl d ,, ensl-,e..e rI t ir t

(aplII arý Numler

IroudL Number,.
%F ~ d U 2i • L I)1 . 2 1 I () , I . uIQ 0 , 0 4

dV d
F'rr it 17 1~ 1 ti;21i g 10 I .(12() 1 oh

(o.LesorzIe N.m,ers

V • L0- ti-A:

He.- }0' '1ds N, tmbiers1

N Re I d df1) d 106 L()
7

D 1 ! 2"V peg, D au'r 6' A, 104' 105

,•'l r:Dl 5~l'6 I IOt |0'K

Weber Numbers
R*'e) d d-- 'l !]r O 0

V D u ' 101 10L

D=I~u~r,' Il0l i3
5

Velocity Head

si u
2 

U2, d•nescm2 5.00 a I0'K 5.00 1 107

psi 7.25 725

ft floid flwanor I t1.7-, l75

0"u 2',u
2
, dynes, m

2  S.0o . 102 1.() 4 IO4

in. *waer 0.2104 20.0

Volumetric Flow u les

A • "u r, , . CMrasec 785 1850
ft "/'oIn l.1M 1. )2

) uA , Ik 4. cm
1 sec .85 78.5

gol 'hr 7.4it 74.6
Mass Flow RIates

"t ". Pqi, g/sec 0.715 7.85

lb •hr 6.23 62.3

, P jq j, 9/sec 7.85 78.5
lb/hr 62.3 h23

Disk Speed, u d', er/see 101 104

(a d, radians/soc 200 2,000

rpm 1,910 19,100
ad' number of" gpravities 204 20,400
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V Itmensional Anal ysi s

k|anv investigators have given a dimensional analysis of the atomiza-

tion phlenomenon [in particular: Baron (190.) , Kuzzietsov and Tslaf 158),

'lugele (l19t). Plit (1%Q3), Popov ([950). Banz (l9.5), and Wigg (1960)1.

inis sect.tion presents an attempt at generalizing such an analysis for all

types of common mn.chanical atomizers.

Fer atomization of a liquid by means of a simple jet, two-phase

nozzle, or spinning disk, we may assume that the mean particle diameter

is determined as follows:

O'AD, = Au, q, p, , PC, jt1, ,t., a, ,gL c, , (A-1)

where D is a characteristic dimension of the atomizer and u a charicter-

istic velocity. Additional geometric ratios may also be used to describe

geometric variations if needed.

by dimensional analysis, Equation A-I may be reduced to

D ,,/D ý 4AMr8, . NW,, NU., NFI, . (pj/pg), • • ) (q /a)2). (qg/q,)] o (A-2)

where

N = Dup/g , (A-3)

N,, = Ou 2 p/a (A-4)

Nil = u/c (A-5)

Nr, = u 2 /gLD (A-6)

Any subscript may be used on D, u. p. and ji in defining the various terms,
NA#, Nw,, Nut. and NF,. The ones chosen merely establish the nature of

the function q,. Any additional geometric ratios (such as angle or dimen-

sion ratios) needed to fully describe the atomizing equipment would be

added as additional dimensionless terms to Equation A-2. The term q,/uDt
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is a ctual II a geometr ic factor, %IroCe q u, and D are interrelated in

terms of the geor.ieti v.

In the case of a simple jet atomizer, q. is zero and, if u ai-d D are

taken as u and Cs, respectively, (q1 'uD 2 ) becomes a (onstaiit, since

q "u D2 . (A-7)

Therefore, for the simple jet atomizer the last two termis of Equation A-2

will disappear.

For the spinning disk, q is usually zero and hence the last term of

Equation A-2 disappears.

For a two-phase atomizer nozzle

qu ) ( U D2 4 A-B)

S- ,(u 1 , 0s) - nu D2 /4 (A-9)

u = u(u1 i u-) i; ) I (A-IO)

Thus, taking D and u as the dimensions and velocities specified in

Equations A-8 to A-10, we have added to Equation A-2 three variables and

three equations. By means of these the term (q) 1 uD2) in Equation A-2

may be replaced by a velocity ratio, e.g., (u /u).

It should also be noted that other dimensionless numbers commonly

referred to in the literature on atomization are not independent of the

above. They are actually a combination of one or more of these, for

example,

MNoD * 'I/Np , (A-11)

NC = upL/ o- = NI,,/NA , (A-12)

NB° - gLPD2/c- l NW,./NF, (A-13)

NG" gLD 3 P 2 /,, 2  N 2,Nrr (A-14)
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These combinations have certain advantages in some applications. For

example, the Ohnesorge, the Bond, and th- Galileo numbers are independent

of fluid velocity, while the capillary number does not involve a -ize term.

The various dimensionless numbers are all a measure of the relative

importance of certain forces, as indicated below:

Dimensionless Number Measure of the
Relative Magnitude of

Reynolds, NR, Inertial to shear forces

Weber, NV, Inertial to surface forces

Froude, NF, Inertial to hydrostatic forces

Capillary, Nc. Shear to surface forces

Bond, NH5  Hydrostatic to surface forces

Mach, N , Compressibility; or of oriented
to random molecular motion

Thus, for those cases where the relative magnitude of a type of force is

small, the effect of that dimensionless group which measures that force

can be neglected.

B. Condensed Relationship

Since compressibility effects are significant only for high pressure

pneumatic atomization and hydrostatic effects are significant only with
very large drops, one may usually neglect the effects of N,. and N,,,.

Thus, for convenience, Equation A-2 may be written in the following iden-

tical alteenative forms:

D/10 k/N N8c = k/NaBN = k/Nt.a~ (A-IS)

This assumes that the role of Reynolds, Weber, capillary, or Ohnesorge

numbers can be approximate4 by simple power functions. The "constant" k

will include the effect of all the other terms of Equation A-2.

If we assume that (1) the effects of hydrostatic head (Froude number)

and compressibility (Mach number) are negligible, (2) the effect of gas

properties is small, and (3) the atomization is controlled by the relative

velocity between gas and liquid rather than by the absolute velocity of

either phase, then k would be expected to approach constancy at low liquid
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loaditigs provided the Heyrolds and Weber numbers are expressed in terms

of relative gas velority and liquid properties. Thi F suggest s that a
simplilied means for comparing data may be: for simple stationary

hydraulic atomizers discharging into stationary gas,

•.I kJ / le(OA -16)

for hydraulic and pneunatic atomizers in general,

D /ID - k/Na" 8 NO (A-17)XX I e)r Wae r

for spinning disk atomizers,

DI k/N NO (A-18)
D /D• k Naid '*id

This is essentially the format adopted by Mugele (1960).

C. Conversions

Assume that there is available a relationship of the form

K., D, 1) gD Q p 0 "a a (A-19)

which is to be converted into the form of Equation A-15 or

1.).( ID) -k/NI A Nd.(A-NO

By combining Equations A-IS and A-19,

k = A D "Duu a 3
pa. o" (A-20)

The conversion can be made in several ways depending on which two terms

are to be excluded from k. It is desirable to include those variables

that have the most influence on fineness of atomization with N., or N,,

and, therefore, to exclude them from k. However, to logically justify

exclusion of a variable from k, the investigator must have studied that

variable and its effect on atomization to a significant extent. In. most
investigations the items most widely varied are nozzle size (0) and

velocity (u).
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Table A-I gives the factors a, 2, aad k correspondini to all the

possible bases for converting from Equation A-19 to Equation A-15. If-

giving these conversions, the specific exponents refer only to the expo-

nents on those terms which appear in the desired format of N., or N,,

(i.e., D and u, if N8 r•, is desired: D, and u1 , if NAP1, is desired, etc.).

Similar variables having different subscripts from those used to define

N, or N,, are grouped together with their exponents as part of Ks,.

7
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A. Basis of Survey

This bibliographic survey was undertaken to ,Cvcal informatinn on

atomization processes relevant to dissemination of chemical warfare

agents. The survey was conducted in two phases: (a) a primary survey

covering open literature and government report literature appearing

between January 1950 anid August 31, 1965, and (b) a supplementary survey

of the open and government report literature appearing between

September 1, 1965 and December 31, 19bb. The primary survey includes

some additional references appearing before 1950 and after September 1965

which were found as various articles were reviewed.

The reference sources consulted for both the primary and the supple-

mentary survey are summarized in T ble B-I. In addition, other sources

were also consulted, including Stanford Research Institute files and the

personal research files of staff scientists.

Table B-Il presents a summary of the references in the primary survey

classified by subject matter. The subject classification has been derived

by review of the abstract (or title, when the abstract was not available).

The subject classification in some cases may be erroneous or incomplete

because of ambiguity of the abstract. The subject areas indicated are

largely self explanatory. "Impingement-dydraulic Atomization Techniques"

includes jets impinging on each other, on a deflector, or on other solid

surfaces. Stationary centrifugal or swirl nozzles (i.e., fixed hydraulic

nozzles with a tangential entry) are included under"Spray-Hydraulic

Atomization Techniques." "External Vibrations" includes all techniques

using externally applied vibrations, such as those produced by mechani-

cally vibrated reeds or nozzles, solid state vibrators, or sonic or shock

waves.

Detailed reference data follow Table B-1I. The references are listed

alphabetically by the last name of the first author, with the most recent

article of that author given first. Where available, the reference it

followed by an abstract, with the abstract source indicated by code at the

end of the abstract. This code is identified in Table B-I and is the
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abbreviation given in th.- first column. When the abstract was by the

author, the word "Al s indicated as the abstract source.

The following i .aals or organizations are extended specia'

thanks for their permi.,ion to include their copyrighted materials.

Prof. K. J. DeJuhasz ("Spray Literature Abstracts")

Academic Press (J. Coil. Sci.)

American Institute of Physics (J. Chem. Phys,, Rev. Sci.
lnstr., J. AppL. Phys., Soviet Phys.-Tech. Phys.)

American Physical Society (Phys. Rev.)

American Society of %tech. Engrs. (Applied Mech. Rev.)

Franklin Institute (J. Franklin Inst.)

Institute of Electrical Engineers (Physics Abstracts)

Pergamon Press (Chem. Eng. Sci.)

The Combustion Institute (Symposia on Combustion)

The American Chemical Society refused LO grant permission to repro-

d~ce abstracts from any of their journals or from Chemical Abstracts,

and the abstracts from these were omitted. Fortunately, there were only

about 60 references from ACS abstracting sources for which abstracts

could not be located elsewhere; the Chemical Abstract reference number

has been indicated in those cases.
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Table B-I (Concluded)

ABSTRACT '4OUtEC-

(Abbt,•taion u;sedl ISSUES MEV|EWED SUPJECT HEADINGS CHECKED

Technical Translations" Jan. 1958- Dec. 31, 1966 Aerosols Dreps

(issued bv the Dept. of Atomtzation JetS
Coiaerce, oTS) Comhustion Spray'

T- Vol. No. -Page No.]

Tethnical Abstract Bulletin This bulletin contains abstract% of ASTIA documenth.
(issued by the Dept. of The abstract was obtained from this bulletin in

Co•mnerce, CFSI) those cases where an AD-number reference was avail-

tTA|I-Year-lssue No.] able from other sources.

..L.-_ A. A., et at., All references at the end of t1hapters 1-4 were

Intectib.n and Combusti-.n checked and some 60 of the 237 references aere
oif L.iquid Fuels, " added to the bibliog~raphy,

WAIX: Tech. Rept. 56-344,
1957

* It the 'Torhsical TranslatiOnsa abatracts the follasi• abbreviatoens ara o awd to iadirate the source of tha t•anslation:

ATS LC
Associated Tachtical Saerices, lac. Photoduplicatian Sarv.re
P.O. Ron 271 Publicii-. P~trd Protect
East Oanga., New Jersey 07017 Library of C•ograas

CFSTI 
*ashington, D.C. 20540

Cleareighouse for Federal Sciestific & Tachaical Isfoasation M
(Formerly Office of Tachaicol Sarvteisa see C",TI
Port Riyal # Sraddock Hoada
Springfiald. Virgini* 22151 SLA
(Also asvalable through Dept. of Comerca Fi-1d Officest SLA Thanaaotioaa Catear

The Johne Cratra Library
CMRS 35 West 33rd Strait

Cantra National das t Recherche Scientif:qaa Ccteago. Illinois 6016
Contra d* Documentation
15 7e. A cstola Fraaca Tranalatioa &ad Technical lwferewtion Services
Paria 7. E'SaCa 32 Maaat*o 16d

ETC Lotaon. S. IS. 5EAlsad
Eeropa*a Translation* Centre
Deelseatrmot 101, Dalft.

The NMtherlands

The fWlosing n&a*s ware chocked againat the author index isaTachaicsa Tr1sealatiewo for the period Jassarv 1951-

December I5. 1966W Theae snase represent workers in the field& of atooiiattoa and spraynig who publish in lasagagae
other than Eaglish

Resonate, C. Ditiskkin. U1. F. . Klein, E. Somarcehaa A. A.
Blifno. V. 1. Engelhard. H. KIag1. R. Stang&*, K.
RIakh, A. G. Eacha, ft. Krans, 1. Troasch. I. A.
Boacher, R. Euteonuer, G. A. Kaharja., W. N. liyasm, K.
Sackhaaa. S. V. Gabhardt. H. Lyaheaskii. A. S. Vldltas#ai. L.
Deboasaois, F. Goloskos. I.. G. Popov. IL Verashchagi, L. F.
Degtas, 0. N. Il'yaahanko, S. M. Popa-, V. F. Volynakit, lU. S.
Deryeri, B. VY. Kowads, M. SchraneSr. K. Zalar, 1.
Disasat, . Khokhlov, S. F. Schemes. N. A. Zawidskt, T. W.

These sama wart also checked in Trnal*stioe Moathlyo for the period Jae. 1955 - Nec. 1957. "Translation Moachly"
is the predecessor of Techaical Trnsalation&* *ad does net have a &abjact iadaS.

82



St's(k]E(CT (LASS IF ICAT ION OF REFEIWN(:Es

IN I¶RIMAHNY SHIVEY

83



Itw- r- k' tt55

UfmYEAR TITLE OR SUBJECT

Anon. _______- 1960 Sovist 60n netiies n Application_____

Anon. IP29 Airless Injection in Diesel Enines

Abdyldao-- 19I Three Dimensional Thin-Lsyer Jet Flo~w

Abrsomoith 196D Theory of Turbulent Jet

Abrsso,.ivh 1944 Theory of Centrifugal Nozzlel

Adler 1950 Atowiastion of Water with Spinning Disks (Thesele5

Adler, at &J. is" Scanning Doitine for Siam Distribution of Spriuyr

Adler. Marshall 1931 Spinning Disc Atunizore. I

Adler. Marshall 1951 Spinning Disc Atomizers. It
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A1is., .ially 1942 Stability of on Electrically Charged Drop

Aklmeako 1960 Outflow of Water Atomizer-
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Asset, Sales 1951 Mydreuli Jets at Low Re and Constant we

Atkinson, Miller 1945 Production of OUst'ru Drops
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Bknerpee. Rao 1962 lat~taiemnt of Water Drops 0 0

Memoa 1947 Atcaiestlon of Liquid Jets a&d Dropletsa#

Baros, Alexander 1051 Moentum, Mass, Meat Transfer in Free Jets _
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Barrot 1980 Measurement of Flemo Temperaturse.

Seardsley 1927. NACA Fuel Spray Photogrsap !RyEratus

leaDKWSeY 1927 Oil Sprays for Fuel-Iajectoas gainee

Sensen, at al. 1940 Drop Slae Distribution of i..qvid Sprays

Swatly. et al. 1982 Method of Observing Drop #is*

Sarg 1942 Aerodyamin Braskup

Mangs&" 194# Spray Drying

Sawwwert 1949 Fl-v pettern in Diesel *mal., #pray

Sarselis 1941 Apparatus for Study of Atomiestios

set*, Msilses, 1900 Drop Size, Measuring Methods

Datsa, Paserooka 1922 Aplicatioa, of Theory of Free Jets
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D inrsar, Itanp 19501 Simple Method for Masourig Orop Stan.-
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B8ird 1926 Oil Jots and Their Ignition 0 .0
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Bitthor 1964 Effect of Ambient Air Vololity on Atoeiastlo
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APPENBIX C

REMARKS ON THE LITERATURE
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In attempting to correlate the results ot various investigators, it

was difficult at times to establish the exact intent of the author because

of problems in semantics, the use of unfamiliar conventions, or inadequate

descriptions. In order to assist any future reviewers, the following

discussioh, covers some of the specific problem areas encountered during

this investigation.

Japanese Literature. The Japanese authors (specifically Tanasawa

and co-workers) commonly use a metric gravitational counterpart to our

English system of units, using meters, kilograms force, and seconds. The

fact that they do not distinguish between kilogram mass and kilogram force

raises problems in establishing conversion factors if ane does not know

whether a given equation is dimensionally consistent or not.

The units commonly used by the Japanese together with their equivalent

in an absolute system are listed below. Although the Japanese authors do

not so specify, the distinction between kilogram force (kgf) and kilo-

gram mass (kgm) is made in the following:

Fluid density (actually specific weight),
kgf/m3 = p(gL/g9)

Fluid viscosity:
AbsGlute, (kgf) (sec)/(m) 2 _ ulg,

Kinematic, m2 /sec = v = z !p

Surface tension, kgf/m = a!g,

Pressure, kgf/m2 = p/g,

The symbols given above as equivalents are defined in the "Nomenclature."

However, the absolute MKS system of units should be used in the above

equalities (instead of the cgs units given in the "Nomenclature").

263



British Literature. The British use a term which they call "Flow

Number" defined by the following equation with the specific units indicated:

FN = q /vAp (C-I)

where

q = liquid flow rate, British Imperial gallons/hr

Ap = pressure drop across nozzle, psi

This number is basically a measure of nozzle capacity., The following

gives the conversion in terms of cgs units:

FN = 208q]!p , (C-2)

where

q = liquid flow rate, cu cm/sec

Lip = pressure drop across nozzle, dynes!sq cm

The British also use a discharge coefficient, C , which is identical. q

to the dimensionless coefficient used in most fluid mechanics literature

and is defined by

Cq = (q,/AWP7/2Ap (C-3)

where in any consistent system of units

qs = liquid flow rate

A = nozzle area

p = liquid density

LAp = pressure drop across nozzle.

The discharge coefficient, Cq, is also identical to the quantity l/VN,.

Russian Literature. Some Russian literature has used metric gravita-

tional units, similar to the Japanese usage. However, in some instances

the kilogram has been used to denote both a mass and a force. This usage

is synonymous with equating g, and ., (both numerically and dimensionally)

when using the type of conversions previously given for the Japanese liter-

ature. This makes it very difficult to decide whether or not an equation

is dimensionally homogeneous or not.
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General. Some authors apply the same name to power ftinctions of a
dimensionless ratio. This is especially true in the case of the Weber
number. The *eber number is commonly defined as Duý. -- but is sometimes
defined as the square root of this, i.e., .IDF.--. Similarly, the Froude
number is usually u2 /gLD but is sometimes defined as u,'!gLD.

One must also be on the lookout for variations in the definitions
of the dimensionless groups involving factors of integers or the ",-alue
77. The ý.se of a radius in place of a diameter is quite common.
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NOMENCLATURE
(Glossary)

Except where specifically noted otherwise, all equations in the text

are written in a dimensionally consistent form so that any consistent

system of absolute units may be employed. The cgs system is given by way

of example of a common absolute system in the following definition of

terms. If it is desired to use a gravitational system of units, a con-

version factor g, must be added as a coefficient in the equations each

time a term involves a force (e.g.. replace Ap with gAp; replace 1/1p

with l/gAp; or replace a with gK ).

Where a symbol is used alone (as in a table or figure), any unit may

be designated. Where no units are designated in those cases, this factor

is either of no significance at that point or those specified in the

"Nomenclature" are to be used.

a = acceleration, due to a force field, cm/sec 2

a4  acceleration at tip of disk, cm/sec 2

As total pneumatic-nozzle gas-phase'discharge-opening
area available for flow, sq cm

A = total ared of liquid inlet to swirl-chamber, sq cm

A - total liquid-phase jet (hydraulic) discharge-opening
area available for flow, sq cm

A - actual apparent area through which liquid flows at

swirl nozzle discharge-opening (i.e., A minus area
of air core), sq cm

AA - nozzle discharge-opening area, aq cm

A " surface area of a drop or particle, aq cm

A - area of particle projected on a plane normal toI direction of flow, sq cm

c - velocity of sound in gas phase, cm/sec

CD . drag coefficient, dimensionless - F,/(A,,)(P u2/2)

C, q discharge coefficient, dimensionless
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C * constant for given correlation where x and y are the
authors initials, dimensionless (where more than one
constant is needed for an author, a numerical sub-
script is also added, e.g., C r1 )

d " "derivative of"

D = characteristic dimension or diameter, cm

D = diameter of the air core in the discharge opening
of a swirl nozzle, -m

D - diameter of the swirl chamber in a swirl atomizer, cm

Dd rotating disk diameter, cm

D = pneumatic-nozzle gas-phase discharge-opening
diameter, cm

Dse effective gas-phase discharge-cpening diameter, cm

DI inside diameter of the largest tube in an annular-

type pneumatic nozzle (see Fig. 2), cm

D smallest discharge opening diameter in an annular-
type pneumatic atomizer (see Fig. 2), cm

D) diameter of the liquid phase discharge opening, cm

D = effective liquid-phase discharge-opening diameter, cm

- V4A 7r'

Dj = outside diameter of the liquid-phase tube in a three-
tube annular-type pneumatic nozzle (see Fig. 2), cm

DIV = diameter of the wetted periphery between the liquid
and gas phases in a pneumatic atomizer, cm

DIN = log median drop diameter on a volume basis, cm
[defined by: In D X,, ý I In DPdaPP/I dnP]

D a number median drop diameter, cm

D - volume (mass) median drop diameter, cm

D a = undefined median drop diameter, cm

DP = particle or drop diameter, cm

Dpmex = maximum drop diameter, cm

D qP = (ID9dn ,/72D'dnII/ 9-

D x undefined mean or median drop diameter, cm

D 1 = linear (arithmetic) mean drop diameter, cm

D 30 ' volume mean drop diameter, cm
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D32 = Sauter (volume/surface) mean diameter, cm

e = natural logarithmic base, 2.718 ...

f = frequency of vibration in a vibrating atomizer,
cycles/sec

F0  = total drag force acting on a particle, dynes

FN ="flow number," a term used in the British
literature to measure nozzle capacity
(specific units given in Appendix C)

g, = conversion factor = 980.7 (g mass/g force)(cm/sec 2 )
[to be added only where a gravitationtal system of
units is to be used]

G = mass velocity of the gas phase at the nozzle discharge
opening (g),(sec)(sq cmn = w 1A

a = local accelerati:jn due to gravity, cm/sec 2

Gj = mass velocity of the liquid (particulate) phase at
the nozzle outlet, g)/(sec)(sq cm) = w)/AI

= dimensionless constant

k = factor for the additional effect of gas flow on

drop size, dimensionless

k = factor for the effect of air core (cavity factor)
in swirl nozzle, dimensionless

k = factor for the effect of overall nozzle geometry
on drop size, dimensionless

k t = correction factor for the type of nozzle, dimensionless

kI = factor for the effect of gas pressure on drop
pg size, dimensionless

k qd factor for the effect of liquid film Reynolds number
on spinning disk performance, dimensionless

k = factor for the effect of loading on drop size,
dimensionless

kA = factor for the effect of recombination of droplets,
dimensionless

kA) = factor for the effect of liquid viscosity on drop
size, dimensionless

kAP = factor for the effect of liquid viscosity on critical
Weber number for drop hkeskup. dimensionless

K - dimensional constant
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K . dimensional constant where x and y are the initials ofy the authors presenting the correlation (where more than
one constant is needLd for an author, a numerical sub-
script is also added, e.g., K.Y, )

logl 0 = logarithm to base 10

In - logarithm to base e

L - length, cm

Lb - jet breakup length, cm

L = . thickness of liquid film at the disk periphery, cm

LS - width of the annular air flow channel at the discharge

of a pneumatic nozzle, cm

L = clearance between the primary air and liquid nozzles

in a pneumatic atomizer (see Fig. 2),cm
L n - length of the discharge opening of a liquid nozzle, cm

Lr - radial distance between a spinning disk or cup lip and
a surrounding annular gas jet, cm

L = wetted disk periphery per liquid stream discharged,

cm/stream

N . mass of a single particle or drop, g

Xpp - mass of powder or collection of particles, g

n,n' = exponent, with subscripts referring to associated
variable, dimensionless

n. number of particles, dimensionless

n. = exponent on loading, dimensionless

ND. = Bond number, dimensionless = 9LpD2/0

Nc. capillary number, dimensionless - u/l!*

Nc. capillary number based on liquid phase properties,
dimensionless - uu la

Nc.jj = capillary number based on the liquid phase properties
and the disk velocity, dimensionless - u.s.i /0'

Nco capillary number based in liquid phase properties and
velocity, dimensionless - u ,Is /0s

NCOr capillary number based on liquid phase properties and
relative velocity, dimensionless = uii 1/0

NI, Froude number, dimensionless = u2 /g D

N, = Froude number based on spinning disk diameter and tip
speed, dimensionless = u'/g LDd
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N. = Froude number based liquid jet velocity and discharge-
opening diameter, dimensionless = ul/gLD,

N G = Galileo number, dimensionless= gLD~p2/42

N,, = Mach number, dimensionless = u/c

No0k = Chnesorge number, dimensionless = A2/lDpr

NohjI =Ohnesorge number based on the liquid phase properties
and spinning disk diameter, dimensionless - 2/DdPjcj

NohJJ = Ohnesorge number based on the liquid phase properties
and the liquid jet discharge-opening diameter,
dimensionless = 4/Dp a

NoGp - Ohnesorge number based on droplet diameter and
properties - u/DP LT

NP t gas pressure expressed as number of atmospheres absolute
(refers to pressure of gas in atomization zone), dimensionless

NHI = Reynolds number, dimensionless = Dup4/

NaRf = Reynolds number based on gas properties, gas-phase, discharge-
opening diameter, andrelative veiocity, dimensionless = D u.p,/pt

Nfielo Reynolds number based on liquid properties and apparent
velocity, dimensionless = DuP,/4,

Ni I d = Reynolds number for a disk based on the liquid phase
properties and the spinning disk velocity and diameter,
dimensionless = Ddunp,/J,

N81 , Reynolds number based on the liquid phase properties,
the liquid jet velocity, and discharge-opening diameter,
dimensionless- D* jpj/;ý/j

NSej, * Reynolds number based on the liquid phase properties
and discharge-opening diameter and the relative velocity
between phases, dimensionless - D pj, 1i4i

Nile = Reynolds number based on particle properties and relative
velocity, dimensionless = DpuPP/•1

Nfieps = Reynolds number based on particle diameter, gas properties,
and relative velocity, dimensionless = D pU 4/t

N = pressure drop through a nozzle orifice expressed as the
number of average liquid velocity heads based on the
discharge-opening area, dimensionless= Ap/(p u2/21)

N * pressure difference converted to effective kinetic energy
expressed as a number of velocity heads, dimensionless

a tp/{p,42/2)

N = pressure drop expressed as the number of equivalent
velocity heads, dimensionless = Ap/(puI/2)
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Nr, . Weber number, dimensionless - Du 2p,/)O

Nre Weber number based on particle diameter, gas properties
and relative velocity, dimensionless - D u2 i- 1/,'

N, ee = Weber number based on s density, gas-phase discharge-
opening diameter and rtlative velocity, dimensionless

. D u 2 ,!/j)
8' r

Nela Weber number based on liquid properties and apparent
velocity, dimensionless = Du U,!p J

Nwe I Weber number for a spinning disk based on the liquid
phase properties and the disk velocity and diameter,
dimensionless - Ddipdp

N Re) Weber number based on the liqmid phase properties, the
liquid jet velocity, and discharge-opening diameter,
dimensionless - D u2 ) I/

NF ,r Weber number based on the liquid phase properties and
discharge-opening and the relative velocity between
phases, dimensionless - D u2P,/

NWe Weber number based on the particle properties and
relative velocity, dimensionless = D u 2p /J,

(Nre) = critical Weber number for drop breakup, dimensionless
= (D u2p la

P r 9 P )c r

(N•, 8 ) 3 value of N,.. based on D 32 for D., dimensionless
32 D 3 2 u•p • P

(N•,,) = value of N,.. based on D 32 for DP, dimensionless
32 D3ur

p * pressure, dynes/sq cm

=P. velocity head of gas, dynes/sq cm = p u;/2

.,p• velocity head of liquid jet at liquid nozzle discharge
ki opening, dynes/sq cm = p u2/2

Ap preiiure drop across a nozzle or orifice, dynes/sq cm

q = volumetric flow rate of the gas (continuous) phase,
cu cm/sec

"q = volumetric flow rate of the liquid (particulate) phase
cu cm/sec

t time, sec

u characteristic velocity, cm/sec

u =, peripheral velocity (tip speed) of a spinning disk,
cm/sec
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ua gas phase velocity relative to nozzle at nozzle
discharge opening, cm/sec

ucr - critical gas-phase velocity (see Plit, Table IV,
point at which atomization mechanism changes),

cm/sec

u, =superficial average liquid velocity relative to nozzle
based upon the total cross-sectional area of the
liquid discharge opening, cm/sec - q*/A

u&. average apparent liquid velocity in swirl nozzle
discharge opening, cm/sec * qI/As

ua t average tangential component of velocity of the
liquid at the inlet to a swirl nozzle, cm/sec

a - relative velocity between the liquid and gas phases
(actual velocity that is effective in atomization);

relative velocity between particles and fluid, cm/sec
= s_- .I, for simple hydraulic and pneumatic ato-

mizers, cm/sec
(2Ap/p IN~dt or uJ(N,,I/N,,)14 for swirl nozzles or
nozzles stationary with respect to ambient atmos-
phere in general, cm/sec. [For axial-flow nozzles
stationary with respect to ambient atmosphere, as
in simple or impinging jets, (N ,,/N.,) - I and
ur a Ua.)

= critical relative velocity required for drop breakup
cm/sec

a Z radial velocity in a spinning disk atomizer, cm/sec

u. = particle surface regression velocity, cm/sec (l/2)(dD /dt)

W gas-phase mass flow rate, g/sec

vJ = liquid-phase mass flow rate, g/sec

x = a variable"

Z complex factor used by Nelson and Stevens (1961), (see
Table III C), dimensionless

r ,/3,yc U exponents

F. = liquid flow rate on a spinning disk per unit wetted
disk periphery,(g)/(sec)(cm)

7 A = efficiency of atomization (fraction of applied energy
converted into new surface energy), dimensionless

- total nozzle discharge-opening angle (angle included
between the converging sides of a nozzle, radians)
(x - j for liquid phase opening; a g for gas phase
opening; if the same, omit x)
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C/ - fan-spray angle, exit total angle (expanding) of nozzle
discharge tor fan spray nozzle, radians

0 total angle of impingement for impinging jet atomizer
(i.e., angle between axes of impinging jets), radians

0. - maximum total cone angle of the spray at the discharge
opening of a spray nozzle, radians

=.. angle between vanes and plane normal to flow direction

4 (or nozzle axis) in a swirl chamber, radians

- fluid (general) viscosity, poise

4g . continuous (gas) phase viscosity, poise

4j = discontinuous (liquid) phase viscosity, poise

4 "- • particle viscosity, poise

v - kinematic viscosity, sq cm/sec -*1p

*r * constant of value 3.14159...

p = fluid (general) density, g/cu cm

PC = gas (continuous) phase density, g/cu cm

SP = liquid (discontinuous) phase density, g/cu cm

pp = particle density, g'ct. cm

0 " interfacial tension (general), dynes/cm

0 = liquid-gas interfacial tension, dynes,'cm

S= particle surface tension, dynes/cm

-P "function of"

. rotational speed, radians/sec

C .= rotational speed of disk, radians/sec

t
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